diff --git a/libstdc++-v3/ChangeLog b/libstdc++-v3/ChangeLog index 33ff5c329ce..69d6d1ba1ba 100644 --- a/libstdc++-v3/ChangeLog +++ b/libstdc++-v3/ChangeLog @@ -1,3 +1,16 @@ +2002-11-15 Benjamin Kosnik + Gabriel Dos Reis + + PR libstdc++/8230 + * include/bits/stl_alloc.h: Use builtin_expect for the most + obvious limit checks. + (__default_alloc_template::allocate): Check for null, throw + bad_alloc. + * include/bits/vector.tcc: Formatting tweaks. + * include/bits/stl_vector.h: Same. + * testsuite/20_util/allocator_members.cc (test02): Add. + * testsuite/23_containers/vector_capacity.cc (test03): Add. + 2002-11-15 Rainer Orth * src/ios.cc [_GLIBCPP_HAVE_UNISTD_H]: Include unistd.h. diff --git a/libstdc++-v3/include/bits/stl_alloc.h b/libstdc++-v3/include/bits/stl_alloc.h index fceed498df6..bab39fb7150 100644 --- a/libstdc++-v3/include/bits/stl_alloc.h +++ b/libstdc++-v3/include/bits/stl_alloc.h @@ -139,7 +139,8 @@ namespace std allocate(size_t __n) { void* __result = malloc(__n); - if (0 == __result) __result = _S_oom_malloc(__n); + if (__builtin_expect(__result == 0, 0)) + __result = _S_oom_malloc(__n); return __result; } @@ -152,7 +153,7 @@ namespace std reallocate(void* __p, size_t /* old_sz */, size_t __new_sz) { void* __result = realloc(__p, __new_sz); - if (0 == __result) + if (__builtin_expect(__result == 0, 0)) __result = _S_oom_realloc(__p, __new_sz); return __result; } @@ -181,8 +182,8 @@ namespace std for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; - if (0 == __my_malloc_handler) - std::__throw_bad_alloc(); + if (__builtin_expect(__my_malloc_handler == 0, 0)) + __throw_bad_alloc(); (*__my_malloc_handler)(); __result = malloc(__n); if (__result) @@ -202,8 +203,8 @@ namespace std for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; - if (0 == __my_malloc_handler) - std::__throw_bad_alloc(); + if (__builtin_expect(__my_malloc_handler == 0, 0)) + __throw_bad_alloc(); (*__my_malloc_handler)(); __result = realloc(__p, __n); if (__result) @@ -232,7 +233,12 @@ namespace std public: static _Tp* allocate(size_t __n) - { return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); } + { + _Tp* __ret = 0; + if (__n) + __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))); + return __ret; + } static _Tp* allocate() @@ -293,9 +299,9 @@ namespace std { char* __real_p = (char*)__p - (int) _S_extra; assert(*(size_t*)__real_p == __old_sz); - char* __result = (char*) - _Alloc::reallocate(__real_p, __old_sz + (int) _S_extra, - __new_sz + (int) _S_extra); + char* __result = (char*) _Alloc::reallocate(__real_p, + __old_sz + (int) _S_extra, + __new_sz + (int) _S_extra); *(size_t*)__result = __new_sz; return __result + (int) _S_extra; } @@ -362,7 +368,7 @@ namespace std static size_t _S_freelist_index(size_t __bytes) - { return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); } + { return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); } // Returns an object of size __n, and optionally adds to size __n // free list. @@ -402,7 +408,7 @@ namespace std else __atomic_add(&_S_force_new, -1); // Trust but verify... - assert (_S_force_new != 0); + assert(_S_force_new != 0); } if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0)) @@ -416,13 +422,15 @@ namespace std // unwinding. _Lock __lock_instance; _Obj* __restrict__ __result = *__my_free_list; - if (__result == 0) + if (__builtin_expect(__result == 0, 0)) __ret = _S_refill(_S_round_up(__n)); else { *__my_free_list = __result -> _M_free_list_link; __ret = __result; - } + } + if (__builtin_expect(__ret == 0, 0)) + __throw_bad_alloc(); } return __ret; } @@ -510,7 +518,7 @@ namespace std *__my_free_list = (_Obj*)_S_start_free; } _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get); - if (0 == _S_start_free) + if (_S_start_free == 0) { size_t __i; _Obj* volatile* __my_free_list; @@ -523,7 +531,7 @@ namespace std { __my_free_list = _S_free_list + _S_freelist_index(__i); __p = *__my_free_list; - if (0 != __p) + if (__p != 0) { *__my_free_list = __p -> _M_free_list_link; _S_start_free = (char*)__p; @@ -569,17 +577,17 @@ namespace std *__my_free_list = __next_obj = (_Obj*)(__chunk + __n); for (__i = 1; ; __i++) { - __current_obj = __next_obj; + __current_obj = __next_obj; __next_obj = (_Obj*)((char*)__next_obj + __n); - if (__nobjs - 1 == __i) - { - __current_obj -> _M_free_list_link = 0; - break; - } - else - __current_obj -> _M_free_list_link = __next_obj; - } - return(__result); + if (__nobjs - 1 == __i) + { + __current_obj -> _M_free_list_link = 0; + break; + } + else + __current_obj -> _M_free_list_link = __next_obj; + } + return __result; } @@ -600,7 +608,7 @@ namespace std __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz; memcpy(__result, __p, __copy_sz); deallocate(__p, __old_sz); - return(__result); + return __result; } #endif @@ -669,13 +677,20 @@ namespace std const_pointer address(const_reference __x) const { return &__x; } - // __n is permitted to be 0. The C++ standard says nothing about what - // the return value is when __n == 0. + // NB: __n is permitted to be 0. The C++ standard says nothing + // about what the return value is when __n == 0. _Tp* allocate(size_type __n, const void* = 0) { - return __n != 0 - ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0; + _Tp* __ret = 0; + if (__n) + { + if (__n <= this->max_size()) + __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))); + else + __throw_bad_alloc(); + } + return __ret; } // __p is not permitted to be a null pointer. @@ -719,12 +734,13 @@ namespace std /** * @if maint - * Allocator adaptor to turn an "SGI" style allocator (e.g., __alloc, - * __malloc_alloc_template) into a "standard" conforming allocator. Note - * that this adaptor does *not* assume that all objects of the underlying - * alloc class are identical, nor does it assume that all of the underlying - * alloc's member functions are static member functions. Note, also, that - * __allocator<_Tp, __alloc> is essentially the same thing as allocator<_Tp>. + * Allocator adaptor to turn an "SGI" style allocator (e.g., + * __alloc, __malloc_alloc_template) into a "standard" conforming + * allocator. Note that this adaptor does *not* assume that all + * objects of the underlying alloc class are identical, nor does it + * assume that all of the underlying alloc's member functions are + * static member functions. Note, also, that __allocator<_Tp, + * __alloc> is essentially the same thing as allocator<_Tp>. * @endif * (See @link Allocators allocators info @endlink for more.) */ @@ -732,7 +748,7 @@ namespace std struct __allocator { _Alloc __underlying_alloc; - + typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; @@ -761,29 +777,31 @@ namespace std const_pointer address(const_reference __x) const { return &__x; } - // __n is permitted to be 0. - _Tp* - allocate(size_type __n, const void* = 0) - { - return __n != 0 - ? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp))) - : 0; - } + // NB: __n is permitted to be 0. The C++ standard says nothing + // about what the return value is when __n == 0. + _Tp* + allocate(size_type __n, const void* = 0) + { + _Tp* __ret = 0; + if (__n) + __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))); + return __ret; + } - // __p is not permitted to be a null pointer. - void - deallocate(pointer __p, size_type __n) - { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); } - - size_type - max_size() const throw() { return size_t(-1) / sizeof(_Tp); } - - void - construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } - - void - destroy(pointer __p) { __p->~_Tp(); } - }; + // __p is not permitted to be a null pointer. + void + deallocate(pointer __p, size_type __n) + { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); } + + size_type + max_size() const throw() { return size_t(-1) / sizeof(_Tp); } + + void + construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } + + void + destroy(pointer __p) { __p->~_Tp(); } + }; template struct __allocator diff --git a/libstdc++-v3/include/bits/stl_vector.h b/libstdc++-v3/include/bits/stl_vector.h index a885d9f8dcb..53547322d65 100644 --- a/libstdc++-v3/include/bits/stl_vector.h +++ b/libstdc++-v3/include/bits/stl_vector.h @@ -73,62 +73,62 @@ namespace std * See bits/stl_deque.h's _Deque_alloc_base for an explanation. * @endif */ - template + template class _Vector_alloc_base - { - public: - typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type - allocator_type; + { + public: + typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type + allocator_type; + + allocator_type + get_allocator() const { return _M_data_allocator; } - allocator_type - get_allocator() const { return _M_data_allocator; } - - _Vector_alloc_base(const allocator_type& __a) + _Vector_alloc_base(const allocator_type& __a) : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) - {} + { } - protected: - allocator_type _M_data_allocator; - _Tp* _M_start; - _Tp* _M_finish; - _Tp* _M_end_of_storage; + protected: + allocator_type _M_data_allocator; + _Tp* _M_start; + _Tp* _M_finish; + _Tp* _M_end_of_storage; - _Tp* - _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); } + _Tp* + _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); } - void - _M_deallocate(_Tp* __p, size_t __n) - { if (__p) _M_data_allocator.deallocate(__p, __n); } - }; + void + _M_deallocate(_Tp* __p, size_t __n) + { if (__p) _M_data_allocator.deallocate(__p, __n); } + }; /// @if maint Specialization for instanceless allocators. @endif - template + template class _Vector_alloc_base<_Tp, _Allocator, true> - { - public: - typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type - allocator_type; + { + public: + typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type + allocator_type; - allocator_type - get_allocator() const { return allocator_type(); } - - _Vector_alloc_base(const allocator_type&) + allocator_type + get_allocator() const { return allocator_type(); } + + _Vector_alloc_base(const allocator_type&) : _M_start(0), _M_finish(0), _M_end_of_storage(0) - {} + { } - protected: - _Tp* _M_start; - _Tp* _M_finish; - _Tp* _M_end_of_storage; + protected: + _Tp* _M_start; + _Tp* _M_finish; + _Tp* _M_end_of_storage; - typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type; + typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type; + + _Tp* + _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); } - _Tp* - _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); } - - void - _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);} - }; + void + _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);} + }; /** @@ -136,29 +136,31 @@ namespace std * See bits/stl_deque.h's _Deque_base for an explanation. * @endif */ - template + template struct _Vector_base : public _Vector_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> - { - public: - typedef _Vector_alloc_base<_Tp, _Alloc, - _Alloc_traits<_Tp, _Alloc>::_S_instanceless> - _Base; - typedef typename _Base::allocator_type allocator_type; - - _Vector_base(const allocator_type& __a) - : _Base(__a) {} - _Vector_base(size_t __n, const allocator_type& __a) - : _Base(__a) { - _M_start = _M_allocate(__n); - _M_finish = _M_start; - _M_end_of_storage = _M_start + __n; - } - - ~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); } - }; + public: + typedef _Vector_alloc_base<_Tp, _Alloc, + _Alloc_traits<_Tp, _Alloc>::_S_instanceless> + _Base; + typedef typename _Base::allocator_type allocator_type; + + _Vector_base(const allocator_type& __a) + : _Base(__a) { } + + _Vector_base(size_t __n, const allocator_type& __a) + : _Base(__a) + { + _M_start = _M_allocate(__n); + _M_finish = _M_start; + _M_end_of_storage = _M_start + __n; + } + + ~_Vector_base() + { _M_deallocate(_M_start, _M_end_of_storage - _M_start); } + }; /** @@ -179,723 +181,744 @@ namespace std * and saves the user from worrying about memory and size allocation. * Subscripting ( @c [] ) access is also provided as with C-style arrays. */ - template > + template > class vector : protected _Vector_base<_Tp, _Alloc> - { - // concept requirements - __glibcpp_class_requires(_Tp, _SGIAssignableConcept) + { + // Concept requirements. + __glibcpp_class_requires(_Tp, _SGIAssignableConcept) - typedef _Vector_base<_Tp, _Alloc> _Base; - typedef vector<_Tp, _Alloc> vector_type; + typedef _Vector_base<_Tp, _Alloc> _Base; + typedef vector<_Tp, _Alloc> vector_type; - public: - typedef _Tp value_type; - typedef value_type* pointer; - typedef const value_type* const_pointer; - typedef __gnu_cxx::__normal_iterator iterator; - typedef __gnu_cxx::__normal_iterator - const_iterator; - typedef std::reverse_iterator const_reverse_iterator; - typedef std::reverse_iterator reverse_iterator; - typedef value_type& reference; - typedef const value_type& const_reference; - typedef size_t size_type; - typedef ptrdiff_t difference_type; - typedef typename _Base::allocator_type allocator_type; + public: + typedef _Tp value_type; + typedef value_type* pointer; + typedef const value_type* const_pointer; + typedef __gnu_cxx::__normal_iterator iterator; + typedef __gnu_cxx::__normal_iterator + const_iterator; + typedef std::reverse_iterator const_reverse_iterator; + typedef std::reverse_iterator reverse_iterator; + typedef value_type& reference; + typedef const value_type& const_reference; + typedef size_t size_type; + typedef ptrdiff_t difference_type; + typedef typename _Base::allocator_type allocator_type; + + protected: + /** @if maint + * These two functions and three data members are all from the + * top-most base class, which varies depending on the type of + * %allocator. They should be pretty self-explanatory, as + * %vector uses a simple contiguous allocation scheme. @endif + */ + using _Base::_M_allocate; + using _Base::_M_deallocate; + using _Base::_M_start; + using _Base::_M_finish; + using _Base::_M_end_of_storage; + + public: + // [23.2.4.1] construct/copy/destroy + // (assign() and get_allocator() are also listed in this section) + /** + * @brief Default constructor creates no elements. + */ + explicit + vector(const allocator_type& __a = allocator_type()) + : _Base(__a) { } - protected: - /** @if maint - * These two functions and three data members are all from the top-most - * base class, which varies depending on the type of %allocator. They - * should be pretty self-explanatory, as %vector uses a simple contiguous - * allocation scheme. - * @endif - */ - using _Base::_M_allocate; - using _Base::_M_deallocate; - using _Base::_M_start; - using _Base::_M_finish; - using _Base::_M_end_of_storage; - - public: - // [23.2.4.1] construct/copy/destroy - // (assign() and get_allocator() are also listed in this section) - /** - * @brief Default constructor creates no elements. - */ - explicit - vector(const allocator_type& __a = allocator_type()) - : _Base(__a) {} - - /** - * @brief Create a %vector with copies of an exemplar element. - * @param n The number of elements to initially create. - * @param value An element to copy. - * - * This constructor fills the %vector with @a n copies of @a value. - */ - vector(size_type __n, const value_type& __value, - const allocator_type& __a = allocator_type()) + /** + * @brief Create a %vector with copies of an exemplar element. + * @param n The number of elements to initially create. + * @param value An element to copy. + * + * This constructor fills the %vector with @a n copies of @a value. + */ + vector(size_type __n, const value_type& __value, + const allocator_type& __a = allocator_type()) : _Base(__n, __a) { _M_finish = uninitialized_fill_n(_M_start, __n, __value); } - /** - * @brief Create a %vector with default elements. - * @param n The number of elements to initially create. - * - * This constructor fills the %vector with @a n copies of a - * default-constructed element. - */ - explicit - vector(size_type __n) + /** + * @brief Create a %vector with default elements. + * @param n The number of elements to initially create. + * + * This constructor fills the %vector with @a n copies of a + * default-constructed element. + */ + explicit + vector(size_type __n) : _Base(__n, allocator_type()) { _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); } - - /** - * @brief %Vector copy constructor. - * @param x A %vector of identical element and allocator types. - * - * The newly-created %vector uses a copy of the allocation object used - * by @a x. All the elements of @a x are copied, but any extra memory in - * @a x (for fast expansion) will not be copied. - */ - vector(const vector& __x) + + /** + * @brief %Vector copy constructor. + * @param x A %vector of identical element and allocator types. + * + * The newly-created %vector uses a copy of the allocation + * object used by @a x. All the elements of @a x are copied, + * but any extra memory in + * @a x (for fast expansion) will not be copied. + */ + vector(const vector& __x) : _Base(__x.size(), __x.get_allocator()) { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); } - /** - * @brief Builds a %vector from a range. - * @param first An input iterator. - * @param last An input iterator. - * - * Create a %vector consisting of copies of the elements from [first,last). - * - * If the iterators are forward, bidirectional, or random-access, then - * this will call the elements' copy constructor N times (where N is - * distance(first,last)) and do no memory reallocation. But if only - * input iterators are used, then this will do at most 2N calls to the - * copy constructor, and logN memory reallocations. - */ - template - vector(_InputIterator __first, _InputIterator __last, - const allocator_type& __a = allocator_type()) - : _Base(__a) - { - // Check whether it's an integral type. If so, it's not an iterator. - typedef typename _Is_integer<_InputIterator>::_Integral _Integral; - _M_initialize_dispatch(__first, __last, _Integral()); - } - - /** - * The dtor only erases the elements, and note that if the elements - * themselves are pointers, the pointed-to memory is not touched in any - * way. Managing the pointer is the user's responsibilty. - */ - ~vector() { _Destroy(_M_start, _M_finish); } - - /** - * @brief %Vector assignment operator. - * @param x A %vector of identical element and allocator types. - * - * All the elements of @a x are copied, but any extra memory in @a x (for - * fast expansion) will not be copied. Unlike the copy constructor, the - * allocator object is not copied. - */ - vector& - operator=(const vector& __x); - - /** - * @brief Assigns a given value to a %vector. - * @param n Number of elements to be assigned. - * @param val Value to be assigned. - * - * This function fills a %vector with @a n copies of the given value. - * Note that the assignment completely changes the %vector and that the - * resulting %vector's size is the same as the number of elements assigned. - * Old data may be lost. - */ - void - assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } - - /** - * @brief Assigns a range to a %vector. - * @param first An input iterator. - * @param last An input iterator. - * - * This function fills a %vector with copies of the elements in the - * range [first,last). - * - * Note that the assignment completely changes the %vector and that the - * resulting %vector's size is the same as the number of elements assigned. - * Old data may be lost. - */ - template - void - assign(_InputIterator __first, _InputIterator __last) - { - // Check whether it's an integral type. If so, it's not an iterator. - typedef typename _Is_integer<_InputIterator>::_Integral _Integral; - _M_assign_dispatch(__first, __last, _Integral()); - } - - /// Get a copy of the memory allocation object. - allocator_type - get_allocator() const { return _Base::get_allocator(); } - - // iterators - /** - * Returns a read/write iterator that points to the first element in the - * %vector. Iteration is done in ordinary element order. - */ - iterator - begin() { return iterator (_M_start); } - - /** - * Returns a read-only (constant) iterator that points to the first element - * in the %vector. Iteration is done in ordinary element order. - */ - const_iterator - begin() const { return const_iterator (_M_start); } - - /** - * Returns a read/write iterator that points one past the last element in - * the %vector. Iteration is done in ordinary element order. - */ - iterator - end() { return iterator (_M_finish); } - - /** - * Returns a read-only (constant) iterator that points one past the last - * element in the %vector. Iteration is done in ordinary element order. - */ - const_iterator - end() const { return const_iterator (_M_finish); } - - /** - * Returns a read/write reverse iterator that points to the last element in - * the %vector. Iteration is done in reverse element order. - */ - reverse_iterator - rbegin() { return reverse_iterator(end()); } - - /** - * Returns a read-only (constant) reverse iterator that points to the last - * element in the %vector. Iteration is done in reverse element order. - */ - const_reverse_iterator - rbegin() const { return const_reverse_iterator(end()); } - - /** - * Returns a read/write reverse iterator that points to one before the - * first element in the %vector. Iteration is done in reverse element - * order. - */ - reverse_iterator - rend() { return reverse_iterator(begin()); } - - /** - * Returns a read-only (constant) reverse iterator that points to one - * before the first element in the %vector. Iteration is done in reverse - * element order. - */ - const_reverse_iterator - rend() const { return const_reverse_iterator(begin()); } - - // [23.2.4.2] capacity - /** Returns the number of elements in the %vector. */ - size_type - size() const { return size_type(end() - begin()); } - - /** Returns the size() of the largest possible %vector. */ - size_type - max_size() const { return size_type(-1) / sizeof(value_type); } - - /** - * @brief Resizes the %vector to the specified number of elements. - * @param new_size Number of elements the %vector should contain. - * @param x Data with which new elements should be populated. - * - * This function will %resize the %vector to the specified number of - * elements. If the number is smaller than the %vector's current size the - * %vector is truncated, otherwise the %vector is extended and new elements - * are populated with given data. - */ - void - resize(size_type __new_size, const value_type& __x) - { - if (__new_size < size()) - erase(begin() + __new_size, end()); - else - insert(end(), __new_size - size(), __x); - } - - /** - * @brief Resizes the %vector to the specified number of elements. - * @param new_size Number of elements the %vector should contain. - * - * This function will resize the %vector to the specified number of - * elements. If the number is smaller than the %vector's current size the - * %vector is truncated, otherwise the %vector is extended and new elements - * are default-constructed. - */ - void - resize(size_type __new_size) { resize(__new_size, value_type()); } - - /** - * Returns the total number of elements that the %vector can hold before - * needing to allocate more memory. - */ - size_type - capacity() const - { return size_type(const_iterator(_M_end_of_storage) - begin()); } - - /** - * Returns true if the %vector is empty. (Thus begin() would equal end().) - */ - bool - empty() const { return begin() == end(); } - - /** - * @brief Attempt to preallocate enough memory for specified number of - * elements. - * @param n Number of elements required. - * @throw std::length_error If @a n exceeds @c max_size(). - * - * This function attempts to reserve enough memory for the %vector to hold - * the specified number of elements. If the number requested is more than - * max_size(), length_error is thrown. - * - * The advantage of this function is that if optimal code is a necessity - * and the user can determine the number of elements that will be required, - * the user can reserve the memory in %advance, and thus prevent a possible - * reallocation of memory and copying of %vector data. - */ - void - reserve(size_type __n); - - // element access - /** - * @brief Subscript access to the data contained in the %vector. - * @param n The index of the element for which data should be accessed. - * @return Read/write reference to data. - * - * This operator allows for easy, array-style, data access. - * Note that data access with this operator is unchecked and out_of_range - * lookups are not defined. (For checked lookups see at().) - */ - reference - operator[](size_type __n) { return *(begin() + __n); } - - /** - * @brief Subscript access to the data contained in the %vector. - * @param n The index of the element for which data should be accessed. - * @return Read-only (constant) reference to data. - * - * This operator allows for easy, array-style, data access. - * Note that data access with this operator is unchecked and out_of_range - * lookups are not defined. (For checked lookups see at().) - */ - const_reference - operator[](size_type __n) const { return *(begin() + __n); } - - protected: - /// @if maint Safety check used only from at(). @endif - void - _M_range_check(size_type __n) const - { - if (__n >= this->size()) - __throw_out_of_range("vector [] access out of range"); - } - - public: - /** - * @brief Provides access to the data contained in the %vector. - * @param n The index of the element for which data should be accessed. - * @return Read/write reference to data. - * @throw std::out_of_range If @a n is an invalid index. - * - * This function provides for safer data access. The parameter is first - * checked that it is in the range of the vector. The function throws - * out_of_range if the check fails. - */ - reference - at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } - - /** - * @brief Provides access to the data contained in the %vector. - * @param n The index of the element for which data should be accessed. - * @return Read-only (constant) reference to data. - * @throw std::out_of_range If @a n is an invalid index. - * - * This function provides for safer data access. The parameter is first - * checked that it is in the range of the vector. The function throws - * out_of_range if the check fails. - */ - const_reference - at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } - - /** - * Returns a read/write reference to the data at the first element of the - * %vector. - */ - reference - front() { return *begin(); } - - /** - * Returns a read-only (constant) reference to the data at the first - * element of the %vector. - */ - const_reference - front() const { return *begin(); } - - /** - * Returns a read/write reference to the data at the last element of the - * %vector. - */ - reference - back() { return *(end() - 1); } - - /** - * Returns a read-only (constant) reference to the data at the last - * element of the %vector. - */ - const_reference - back() const { return *(end() - 1); } - - // [23.2.4.3] modifiers - /** - * @brief Add data to the end of the %vector. - * @param x Data to be added. - * - * This is a typical stack operation. The function creates an element at - * the end of the %vector and assigns the given data to it. - * Due to the nature of a %vector this operation can be done in constant - * time if the %vector has preallocated space available. - */ - void - push_back(const value_type& __x) - { - if (_M_finish != _M_end_of_storage) - { - _Construct(_M_finish, __x); - ++_M_finish; - } - else - _M_insert_aux(end(), __x); - } - - /** - * @brief Removes last element. - * - * This is a typical stack operation. It shrinks the %vector by one. - * - * Note that no data is returned, and if the last element's data is - * needed, it should be retrieved before pop_back() is called. - */ - void - pop_back() - { - --_M_finish; - _Destroy(_M_finish); - } - - /** - * @brief Inserts given value into %vector before specified iterator. - * @param position An iterator into the %vector. - * @param x Data to be inserted. - * @return An iterator that points to the inserted data. - * - * This function will insert a copy of the given value before the specified - * location. - * Note that this kind of operation could be expensive for a %vector and if - * it is frequently used the user should consider using std::list. - */ - iterator - insert(iterator __position, const value_type& __x); - - #ifdef _GLIBCPP_DEPRECATED - /** - * @brief Inserts an element into the %vector. - * @param position An iterator into the %vector. - * @return An iterator that points to the inserted element. - * - * This function will insert a default-constructed element before the - * specified location. You should consider using - * insert(position,value_type()) instead. - * Note that this kind of operation could be expensive for a vector and if - * it is frequently used the user should consider using std::list. - * - * @note This was deprecated in 3.2 and will be removed in 3.4. You must - * define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see - * c++config.h. - */ - iterator - insert(iterator __position) - { return insert(__position, value_type()); } - #endif - - /** - * @brief Inserts a number of copies of given data into the %vector. - * @param position An iterator into the %vector. - * @param n Number of elements to be inserted. - * @param x Data to be inserted. - * - * This function will insert a specified number of copies of the given data - * before the location specified by @a position. - * - * Note that this kind of operation could be expensive for a %vector and if - * it is frequently used the user should consider using std::list. - */ - void - insert (iterator __pos, size_type __n, const value_type& __x) - { _M_fill_insert(__pos, __n, __x); } - - /** - * @brief Inserts a range into the %vector. - * @param pos An iterator into the %vector. - * @param first An input iterator. - * @param last An input iterator. - * - * This function will insert copies of the data in the range [first,last) - * into the %vector before the location specified by @a pos. - * - * Note that this kind of operation could be expensive for a %vector and if - * it is frequently used the user should consider using std::list. - */ - template - void - insert(iterator __pos, _InputIterator __first, _InputIterator __last) + /** + * @brief Builds a %vector from a range. + * @param first An input iterator. + * @param last An input iterator. + * + * Create a %vector consisting of copies of the elements from + * [first,last). + * + * If the iterators are forward, bidirectional, or random-access, then + * this will call the elements' copy constructor N times (where N is + * distance(first,last)) and do no memory reallocation. But if only + * input iterators are used, then this will do at most 2N calls to the + * copy constructor, and logN memory reallocations. + */ + template + vector(_InputIterator __first, _InputIterator __last, + const allocator_type& __a = allocator_type()) + : _Base(__a) { - // Check whether it's an integral type. If so, it's not an iterator. - typedef typename _Is_integer<_InputIterator>::_Integral _Integral; - _M_insert_dispatch(__pos, __first, __last, _Integral()); - } + // Check whether it's an integral type. If so, it's not an iterator. + typedef typename _Is_integer<_InputIterator>::_Integral _Integral; + _M_initialize_dispatch(__first, __last, _Integral()); + } + + /** + * The dtor only erases the elements, and note that if the elements + * themselves are pointers, the pointed-to memory is not touched in any + * way. Managing the pointer is the user's responsibilty. + */ + ~vector() { _Destroy(_M_start, _M_finish); } - /** - * @brief Remove element at given position. - * @param position Iterator pointing to element to be erased. - * @return An iterator pointing to the next element (or end()). - * - * This function will erase the element at the given position and thus - * shorten the %vector by one. - * - * Note This operation could be expensive and if it is frequently used the - * user should consider using std::list. The user is also cautioned that - * this function only erases the element, and that if the element is itself - * a pointer, the pointed-to memory is not touched in any way. Managing - * the pointer is the user's responsibilty. - */ - iterator - erase(iterator __position); + /** + * @brief %Vector assignment operator. + * @param x A %vector of identical element and allocator types. + * + * All the elements of @a x are copied, but any extra memory in + * @a x (for fast expansion) will not be copied. Unlike the + * copy constructor, the allocator object is not copied. + */ + vector& + operator=(const vector& __x); - /** - * @brief Remove a range of elements. - * @param first Iterator pointing to the first element to be erased. - * @param last Iterator pointing to one past the last element to be - * erased. - * @return An iterator pointing to the element pointed to by @a last - * prior to erasing (or end()). - * - * This function will erase the elements in the range [first,last) and - * shorten the %vector accordingly. - * - * Note This operation could be expensive and if it is frequently used the - * user should consider using std::list. The user is also cautioned that - * this function only erases the elements, and that if the elements - * themselves are pointers, the pointed-to memory is not touched in any - * way. Managing the pointer is the user's responsibilty. - */ - iterator - erase(iterator __first, iterator __last); + /** + * @brief Assigns a given value to a %vector. + * @param n Number of elements to be assigned. + * @param val Value to be assigned. + * + * This function fills a %vector with @a n copies of the given + * value. Note that the assignment completely changes the + * %vector and that the resulting %vector's size is the same as + * the number of elements assigned. Old data may be lost. + */ + void + assign(size_type __n, const value_type& __val) + { _M_fill_assign(__n, __val); } - /** - * @brief Swaps data with another %vector. - * @param x A %vector of the same element and allocator types. - * - * This exchanges the elements between two vectors in constant time. - * (Three pointers, so it should be quite fast.) - * Note that the global std::swap() function is specialized such that - * std::swap(v1,v2) will feed to this function. - */ - void - swap(vector& __x) - { - std::swap(_M_start, __x._M_start); - std::swap(_M_finish, __x._M_finish); - std::swap(_M_end_of_storage, __x._M_end_of_storage); - } - - /** - * Erases all the elements. Note that this function only erases the - * elements, and that if the elements themselves are pointers, the - * pointed-to memory is not touched in any way. Managing the pointer is - * the user's responsibilty. - */ - void - clear() { erase(begin(), end()); } - - protected: - /** - * @if maint - * Memory expansion handler. Uses the member allocation function to - * obtain @a n bytes of memory, and then copies [first,last) into it. - * @endif - */ - template - pointer - _M_allocate_and_copy(size_type __n, - _ForwardIterator __first, _ForwardIterator __last) - { - pointer __result = _M_allocate(__n); - try + /** + * @brief Assigns a range to a %vector. + * @param first An input iterator. + * @param last An input iterator. + * + * This function fills a %vector with copies of the elements in the + * range [first,last). + * + * Note that the assignment completely changes the %vector and + * that the resulting %vector's size is the same as the number + * of elements assigned. Old data may be lost. + */ + template + void + assign(_InputIterator __first, _InputIterator __last) { - uninitialized_copy(__first, __last, __result); - return __result; - } - catch(...) + // Check whether it's an integral type. If so, it's not an iterator. + typedef typename _Is_integer<_InputIterator>::_Integral _Integral; + _M_assign_dispatch(__first, __last, _Integral()); + } + + /// Get a copy of the memory allocation object. + allocator_type + get_allocator() const { return _Base::get_allocator(); } + + // iterators + /** + * Returns a read/write iterator that points to the first element in the + * %vector. Iteration is done in ordinary element order. + */ + iterator + begin() { return iterator (_M_start); } + + /** + * Returns a read-only (constant) iterator that points to the + * first element in the %vector. Iteration is done in ordinary + * element order. + */ + const_iterator + begin() const { return const_iterator (_M_start); } + + /** + * Returns a read/write iterator that points one past the last + * element in the %vector. Iteration is done in ordinary + * element order. + */ + iterator + end() { return iterator (_M_finish); } + + /** + * Returns a read-only (constant) iterator that points one past the last + * element in the %vector. Iteration is done in ordinary element order. + */ + const_iterator + end() const { return const_iterator (_M_finish); } + + /** + * Returns a read/write reverse iterator that points to the + * last element in the %vector. Iteration is done in reverse + * element order. + */ + reverse_iterator + rbegin() { return reverse_iterator(end()); } + + /** + * Returns a read-only (constant) reverse iterator that points + * to the last element in the %vector. Iteration is done in + * reverse element order. + */ + const_reverse_iterator + rbegin() const { return const_reverse_iterator(end()); } + + /** + * Returns a read/write reverse iterator that points to one before the + * first element in the %vector. Iteration is done in reverse element + * order. + */ + reverse_iterator + rend() { return reverse_iterator(begin()); } + + /** + * Returns a read-only (constant) reverse iterator that points + * to one before the first element in the %vector. Iteration + * is done in reverse element order. + */ + const_reverse_iterator + rend() const { return const_reverse_iterator(begin()); } + + // [23.2.4.2] capacity + /** Returns the number of elements in the %vector. */ + size_type + size() const { return size_type(end() - begin()); } + + /** Returns the size() of the largest possible %vector. */ + size_type + max_size() const { return size_type(-1) / sizeof(value_type); } + + /** + * @brief Resizes the %vector to the specified number of elements. + * @param new_size Number of elements the %vector should contain. + * @param x Data with which new elements should be populated. + * + * This function will %resize the %vector to the specified + * number of elements. If the number is smaller than the + * %vector's current size the %vector is truncated, otherwise + * the %vector is extended and new elements are populated with + * given data. + */ + void + resize(size_type __new_size, const value_type& __x) + { + if (__new_size < size()) + erase(begin() + __new_size, end()); + else + insert(end(), __new_size - size(), __x); + } + + /** + * @brief Resizes the %vector to the specified number of elements. + * @param new_size Number of elements the %vector should contain. + * + * This function will resize the %vector to the specified + * number of elements. If the number is smaller than the + * %vector's current size the %vector is truncated, otherwise + * the %vector is extended and new elements are + * default-constructed. + */ + void + resize(size_type __new_size) { resize(__new_size, value_type()); } + + /** + * Returns the total number of elements that the %vector can hold before + * needing to allocate more memory. + */ + size_type + capacity() const + { return size_type(const_iterator(_M_end_of_storage) - begin()); } + + /** + * Returns true if the %vector is empty. (Thus begin() would + * equal end().) + */ + bool + empty() const { return begin() == end(); } + + /** + * @brief Attempt to preallocate enough memory for specified number of + * elements. + * @param n Number of elements required. + * @throw std::length_error If @a n exceeds @c max_size(). + * + * This function attempts to reserve enough memory for the + * %vector to hold the specified number of elements. If the + * number requested is more than max_size(), length_error is + * thrown. + * + * The advantage of this function is that if optimal code is a + * necessity and the user can determine the number of elements + * that will be required, the user can reserve the memory in + * %advance, and thus prevent a possible reallocation of memory + * and copying of %vector data. + */ + void + reserve(size_type __n); + + // element access + /** + * @brief Subscript access to the data contained in the %vector. + * @param n The index of the element for which data should be accessed. + * @return Read/write reference to data. + * + * This operator allows for easy, array-style, data access. + * Note that data access with this operator is unchecked and + * out_of_range lookups are not defined. (For checked lookups + * see at().) + */ + reference + operator[](size_type __n) { return *(begin() + __n); } + + /** + * @brief Subscript access to the data contained in the %vector. + * @param n The index of the element for which data should be + * accessed. + * @return Read-only (constant) reference to data. + * + * This operator allows for easy, array-style, data access. + * Note that data access with this operator is unchecked and + * out_of_range lookups are not defined. (For checked lookups + * see at().) + */ + const_reference + operator[](size_type __n) const { return *(begin() + __n); } + + protected: + /// @if maint Safety check used only from at(). @endif + void + _M_range_check(size_type __n) const + { + if (__n >= this->size()) + __throw_out_of_range("vector [] access out of range"); + } + + public: + /** + * @brief Provides access to the data contained in the %vector. + * @param n The index of the element for which data should be + * accessed. + * @return Read/write reference to data. + * @throw std::out_of_range If @a n is an invalid index. + * + * This function provides for safer data access. The parameter is first + * checked that it is in the range of the vector. The function throws + * out_of_range if the check fails. + */ + reference + at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } + + /** + * @brief Provides access to the data contained in the %vector. + * @param n The index of the element for which data should be + * accessed. + * @return Read-only (constant) reference to data. + * @throw std::out_of_range If @a n is an invalid index. + * + * This function provides for safer data access. The parameter + * is first checked that it is in the range of the vector. The + * function throws out_of_range if the check fails. + */ + const_reference + at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } + + /** + * Returns a read/write reference to the data at the first + * element of the %vector. + */ + reference + front() { return *begin(); } + + /** + * Returns a read-only (constant) reference to the data at the first + * element of the %vector. + */ + const_reference + front() const { return *begin(); } + + /** + * Returns a read/write reference to the data at the last element of the + * %vector. + */ + reference + back() { return *(end() - 1); } + + /** + * Returns a read-only (constant) reference to the data at the last + * element of the %vector. + */ + const_reference + back() const { return *(end() - 1); } + + // [23.2.4.3] modifiers + /** + * @brief Add data to the end of the %vector. + * @param x Data to be added. + * + * This is a typical stack operation. The function creates an + * element at the end of the %vector and assigns the given data + * to it. Due to the nature of a %vector this operation can be + * done in constant time if the %vector has preallocated space + * available. + */ + void + push_back(const value_type& __x) + { + if (_M_finish != _M_end_of_storage) + { + _Construct(_M_finish, __x); + ++_M_finish; + } + else + _M_insert_aux(end(), __x); + } + + /** + * @brief Removes last element. + * + * This is a typical stack operation. It shrinks the %vector by one. + * + * Note that no data is returned, and if the last element's data is + * needed, it should be retrieved before pop_back() is called. + */ + void + pop_back() + { + --_M_finish; + _Destroy(_M_finish); + } + + /** + * @brief Inserts given value into %vector before specified iterator. + * @param position An iterator into the %vector. + * @param x Data to be inserted. + * @return An iterator that points to the inserted data. + * + * This function will insert a copy of the given value before + * the specified location. Note that this kind of operation + * could be expensive for a %vector and if it is frequently + * used the user should consider using std::list. + */ + iterator + insert(iterator __position, const value_type& __x); + +#ifdef _GLIBCPP_DEPRECATED + /** + * @brief Inserts an element into the %vector. + * @param position An iterator into the %vector. + * @return An iterator that points to the inserted element. + * + * This function will insert a default-constructed element + * before the specified location. You should consider using + * insert(position,value_type()) instead. Note that this kind + * of operation could be expensive for a vector and if it is + * frequently used the user should consider using std::list. + * + * @note This was deprecated in 3.2 and will be removed in 3.4. + * You must define @c _GLIBCPP_DEPRECATED to make this visible + * in 3.2; see c++config.h. + */ + iterator + insert(iterator __position) + { return insert(__position, value_type()); } +#endif + + /** + * @brief Inserts a number of copies of given data into the %vector. + * @param position An iterator into the %vector. + * @param n Number of elements to be inserted. + * @param x Data to be inserted. + * + * This function will insert a specified number of copies of + * the given data before the location specified by @a position. + * + * Note that this kind of operation could be expensive for a + * %vector and if it is frequently used the user should + * consider using std::list. + */ + void + insert(iterator __pos, size_type __n, const value_type& __x) + { _M_fill_insert(__pos, __n, __x); } + + /** + * @brief Inserts a range into the %vector. + * @param pos An iterator into the %vector. + * @param first An input iterator. + * @param last An input iterator. + * + * This function will insert copies of the data in the range + * [first,last) into the %vector before the location specified + * by @a pos. + * + * Note that this kind of operation could be expensive for a + * %vector and if it is frequently used the user should + * consider using std::list. + */ + template + void + insert(iterator __pos, _InputIterator __first, _InputIterator __last) { - _M_deallocate(__result, __n); - __throw_exception_again; - } - } + // Check whether it's an integral type. If so, it's not an iterator. + typedef typename _Is_integer<_InputIterator>::_Integral _Integral; + _M_insert_dispatch(__pos, __first, __last, _Integral()); + } + + /** + * @brief Remove element at given position. + * @param position Iterator pointing to element to be erased. + * @return An iterator pointing to the next element (or end()). + * + * This function will erase the element at the given position and thus + * shorten the %vector by one. + * + * Note This operation could be expensive and if it is + * frequently used the user should consider using std::list. + * The user is also cautioned that this function only erases + * the element, and that if the element is itself a pointer, + * the pointed-to memory is not touched in any way. Managing + * the pointer is the user's responsibilty. + */ + iterator + erase(iterator __position); - - // Internal constructor functions follow. - - // called by the range constructor to implement [23.1.1]/9 - template + /** + * @brief Remove a range of elements. + * @param first Iterator pointing to the first element to be erased. + * @param last Iterator pointing to one past the last element to be + * erased. + * @return An iterator pointing to the element pointed to by @a last + * prior to erasing (or end()). + * + * This function will erase the elements in the range [first,last) and + * shorten the %vector accordingly. + * + * Note This operation could be expensive and if it is + * frequently used the user should consider using std::list. + * The user is also cautioned that this function only erases + * the elements, and that if the elements themselves are + * pointers, the pointed-to memory is not touched in any way. + * Managing the pointer is the user's responsibilty. + */ + iterator + erase(iterator __first, iterator __last); + + /** + * @brief Swaps data with another %vector. + * @param x A %vector of the same element and allocator types. + * + * This exchanges the elements between two vectors in constant time. + * (Three pointers, so it should be quite fast.) + * Note that the global std::swap() function is specialized such that + * std::swap(v1,v2) will feed to this function. + */ void - _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) + swap(vector& __x) { - _M_start = _M_allocate(__n); - _M_end_of_storage = _M_start + __n; - _M_finish = uninitialized_fill_n(_M_start, __n, __value); + std::swap(_M_start, __x._M_start); + std::swap(_M_finish, __x._M_finish); + std::swap(_M_end_of_storage, __x._M_end_of_storage); } - - // called by the range constructor to implement [23.1.1]/9 - template + + /** + * Erases all the elements. Note that this function only erases the + * elements, and that if the elements themselves are pointers, the + * pointed-to memory is not touched in any way. Managing the pointer is + * the user's responsibilty. + */ void - _M_initialize_dispatch(_InputIter __first, _InputIter __last, - __false_type) - { - typedef typename iterator_traits<_InputIter>::iterator_category - _IterCategory; - _M_range_initialize(__first, __last, _IterCategory()); - } + clear() { erase(begin(), end()); } + + protected: + /** + * @if maint + * Memory expansion handler. Uses the member allocation function to + * obtain @a n bytes of memory, and then copies [first,last) into it. + * @endif + */ + template + pointer + _M_allocate_and_copy(size_type __n, + _ForwardIterator __first, _ForwardIterator __last) + { + pointer __result = _M_allocate(__n); + try + { + uninitialized_copy(__first, __last, __result); + return __result; + } + catch(...) + { + _M_deallocate(__result, __n); + __throw_exception_again; + } + } + + + // Internal constructor functions follow. + + // Called by the range constructor to implement [23.1.1]/9 + template + void + _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) + { + _M_start = _M_allocate(__n); + _M_end_of_storage = _M_start + __n; + _M_finish = uninitialized_fill_n(_M_start, __n, __value); + } + + // Called by the range constructor to implement [23.1.1]/9 + template + void + _M_initialize_dispatch(_InputIter __first, _InputIter __last, + __false_type) + { + typedef typename iterator_traits<_InputIter>::iterator_category + _IterCategory; + _M_range_initialize(__first, __last, _IterCategory()); + } + + // Called by the second initialize_dispatch above + template + void + _M_range_initialize(_InputIterator __first, + _InputIterator __last, input_iterator_tag) + { + for ( ; __first != __last; ++__first) + push_back(*__first); + } + + // Called by the second initialize_dispatch above + template + void + _M_range_initialize(_ForwardIterator __first, + _ForwardIterator __last, forward_iterator_tag) + { + size_type __n = distance(__first, __last); + _M_start = _M_allocate(__n); + _M_end_of_storage = _M_start + __n; + _M_finish = uninitialized_copy(__first, __last, _M_start); + } + + + // Internal assign functions follow. The *_aux functions do the actual + // assignment work for the range versions. + + // Called by the range assign to implement [23.1.1]/9 + template + void + _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) + { + _M_fill_assign(static_cast(__n), + static_cast(__val)); + } + + // Called by the range assign to implement [23.1.1]/9 + template + void + _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type) + { + typedef typename iterator_traits<_InputIter>::iterator_category + _IterCategory; + _M_assign_aux(__first, __last, _IterCategory()); + } + + // Called by the second assign_dispatch above + template + void + _M_assign_aux(_InputIterator __first, _InputIterator __last, + input_iterator_tag); - // called by the second initialize_dispatch above - template - void - _M_range_initialize(_InputIterator __first, - _InputIterator __last, input_iterator_tag) - { - for ( ; __first != __last; ++__first) - push_back(*__first); - } + // Called by the second assign_dispatch above + template + void + _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, + forward_iterator_tag); - // called by the second initialize_dispatch above - template - void _M_range_initialize(_ForwardIterator __first, - _ForwardIterator __last, forward_iterator_tag) - { - size_type __n = distance(__first, __last); - _M_start = _M_allocate(__n); - _M_end_of_storage = _M_start + __n; - _M_finish = uninitialized_copy(__first, __last, _M_start); - } - - - // Internal assign functions follow. The *_aux functions do the actual - // assignment work for the range versions. - - // called by the range assign to implement [23.1.1]/9 - template + // Called by assign(n,t), and the range assign when it turns out + // to be the same thing. void - _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) - { - _M_fill_assign(static_cast(__n), - static_cast(__val)); - } + _M_fill_assign(size_type __n, const value_type& __val); - // called by the range assign to implement [23.1.1]/9 - template + + // Internal insert functions follow. + + // Called by the range insert to implement [23.1.1]/9 + template + void + _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, + __true_type) + { + _M_fill_insert(__pos, static_cast(__n), + static_cast(__val)); + } + + // Called by the range insert to implement [23.1.1]/9 + template + void + _M_insert_dispatch(iterator __pos, _InputIterator __first, + _InputIterator __last, __false_type) + { + typedef typename iterator_traits<_InputIterator>::iterator_category + _IterCategory; + _M_range_insert(__pos, __first, __last, _IterCategory()); + } + + // Called by the second insert_dispatch above + template + void + _M_range_insert(iterator __pos, _InputIterator __first, + _InputIterator __last, input_iterator_tag); + + // Called by the second insert_dispatch above + template + void + _M_range_insert(iterator __pos, _ForwardIterator __first, + _ForwardIterator __last, forward_iterator_tag); + + // Called by insert(p,n,x), and the range insert when it turns out to be + // the same thing. void - _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type) - { - typedef typename iterator_traits<_InputIter>::iterator_category - _IterCategory; - _M_assign_aux(__first, __last, _IterCategory()); - } - - // called by the second assign_dispatch above - template - void - _M_assign_aux(_InputIterator __first, _InputIterator __last, - input_iterator_tag); - - // called by the second assign_dispatch above - template - void - _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, - forward_iterator_tag); - - // Called by assign(n,t), and the range assign when it turns out to be the - // same thing. - void - _M_fill_assign(size_type __n, const value_type& __val); - - - // Internal insert functions follow. - - // called by the range insert to implement [23.1.1]/9 - template + _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); + + // Called by insert(p,x) void - _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, - __true_type) - { - _M_fill_insert(__pos, static_cast(__n), - static_cast(__val)); - } - - // called by the range insert to implement [23.1.1]/9 - template - void - _M_insert_dispatch(iterator __pos, _InputIterator __first, - _InputIterator __last, __false_type) - { - typedef typename iterator_traits<_InputIterator>::iterator_category - _IterCategory; - _M_range_insert(__pos, __first, __last, _IterCategory()); - } - - // called by the second insert_dispatch above - template - void - _M_range_insert(iterator __pos, - _InputIterator __first, _InputIterator __last, - input_iterator_tag); - - // called by the second insert_dispatch above - template - void - _M_range_insert(iterator __pos, - _ForwardIterator __first, _ForwardIterator __last, - forward_iterator_tag); - - // Called by insert(p,n,x), and the range insert when it turns out to be - // the same thing. - void - _M_fill_insert (iterator __pos, size_type __n, const value_type& __x); - - // called by insert(p,x) - void - _M_insert_aux(iterator __position, const value_type& __x); - - #ifdef _GLIBCPP_DEPRECATED - // unused now (same situation as in deque) - void _M_insert_aux(iterator __position); - #endif - }; + _M_insert_aux(iterator __position, const value_type& __x); + +#ifdef _GLIBCPP_DEPRECATED + // Unused now (same situation as in deque) + void _M_insert_aux(iterator __position); +#endif + }; /** @@ -908,7 +931,7 @@ namespace std * vectors. Vectors are considered equivalent if their sizes are equal, * and if corresponding elements compare equal. */ - template + template inline bool operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { @@ -927,7 +950,7 @@ namespace std * * See std::lexographical_compare() for how the determination is made. */ - template + template inline bool operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { @@ -936,31 +959,31 @@ namespace std } /// Based on operator== - template + template inline bool operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__x == __y); } /// Based on operator< - template + template inline bool operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return __y < __x; } /// Based on operator< - template + template inline bool operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__y < __x); } /// Based on operator< - template + template inline bool operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__x < __y); } /// See std::vector::swap(). - template + template inline void swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y) { __x.swap(__y); } diff --git a/libstdc++-v3/include/bits/vector.tcc b/libstdc++-v3/include/bits/vector.tcc index 4e742dd8672..da5cf7edf83 100644 --- a/libstdc++-v3/include/bits/vector.tcc +++ b/libstdc++-v3/include/bits/vector.tcc @@ -63,7 +63,7 @@ namespace std { - template + template void vector<_Tp,_Alloc>:: reserve(size_type __n) @@ -82,7 +82,7 @@ namespace std } } - template + template typename vector<_Tp,_Alloc>::iterator vector<_Tp,_Alloc>:: insert(iterator __position, const value_type& __x) @@ -98,7 +98,7 @@ namespace std return begin() + __n; } - template + template typename vector<_Tp,_Alloc>::iterator vector<_Tp,_Alloc>:: erase(iterator __position) @@ -110,7 +110,7 @@ namespace std return __position; } - template + template typename vector<_Tp,_Alloc>::iterator vector<_Tp,_Alloc>:: erase(iterator __first, iterator __last) @@ -121,7 +121,7 @@ namespace std return __first; } - template + template vector<_Tp,_Alloc>& vector<_Tp,_Alloc>:: operator=(const vector<_Tp,_Alloc>& __x) @@ -152,7 +152,7 @@ namespace std return *this; } - template + template void vector<_Tp,_Alloc>:: _M_fill_assign(size_t __n, const value_type& __val) @@ -171,7 +171,7 @@ namespace std erase(fill_n(begin(), __n, __val), end()); } - template template + template template void vector<_Tp,_Alloc>:: _M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag) @@ -185,7 +185,7 @@ namespace std insert(end(), __first, __last); } - template template + template template void vector<_Tp,_Alloc>:: _M_assign_aux(_ForwardIter __first, _ForwardIter __last, @@ -216,7 +216,7 @@ namespace std } } - template + template void vector<_Tp,_Alloc>:: _M_insert_aux(iterator __position, const _Tp& __x) @@ -259,7 +259,7 @@ namespace std } #ifdef _GLIBCPP_DEPRECATED - template + template void vector<_Tp,_Alloc>:: _M_insert_aux(iterator __position) @@ -302,63 +302,64 @@ namespace std } #endif - template + template void vector<_Tp,_Alloc>:: _M_fill_insert(iterator __position, size_type __n, const value_type& __x) { if (__n != 0) { - if (size_type(_M_end_of_storage - _M_finish) >= __n) { - value_type __x_copy = __x; - const size_type __elems_after = end() - __position; - iterator __old_finish(_M_finish); - if (__elems_after > __n) - { - uninitialized_copy(_M_finish - __n, _M_finish, _M_finish); - _M_finish += __n; - copy_backward(__position, __old_finish - __n, __old_finish); - fill(__position, __position + __n, __x_copy); - } - else - { - uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy); - _M_finish += __n - __elems_after; - uninitialized_copy(__position, __old_finish, _M_finish); - _M_finish += __elems_after; - fill(__position, __old_finish, __x_copy); - } - } + if (size_type(_M_end_of_storage - _M_finish) >= __n) + { + value_type __x_copy = __x; + const size_type __elems_after = end() - __position; + iterator __old_finish(_M_finish); + if (__elems_after > __n) + { + uninitialized_copy(_M_finish - __n, _M_finish, _M_finish); + _M_finish += __n; + copy_backward(__position, __old_finish - __n, __old_finish); + fill(__position, __position + __n, __x_copy); + } + else + { + uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy); + _M_finish += __n - __elems_after; + uninitialized_copy(__position, __old_finish, _M_finish); + _M_finish += __elems_after; + fill(__position, __old_finish, __x_copy); + } + } else - { - const size_type __old_size = size(); - const size_type __len = __old_size + max(__old_size, __n); - iterator __new_start(_M_allocate(__len)); - iterator __new_finish(__new_start); - try - { - __new_finish = uninitialized_copy(begin(), __position, - __new_start); - __new_finish = uninitialized_fill_n(__new_finish, __n, __x); - __new_finish - = uninitialized_copy(__position, end(), __new_finish); - } - catch(...) - { - _Destroy(__new_start,__new_finish); - _M_deallocate(__new_start.base(),__len); - __throw_exception_again; - } - _Destroy(_M_start, _M_finish); - _M_deallocate(_M_start, _M_end_of_storage - _M_start); - _M_start = __new_start.base(); - _M_finish = __new_finish.base(); - _M_end_of_storage = __new_start.base() + __len; - } + { + const size_type __old_size = size(); + const size_type __len = __old_size + max(__old_size, __n); + iterator __new_start(_M_allocate(__len)); + iterator __new_finish(__new_start); + try + { + __new_finish = uninitialized_copy(begin(), __position, + __new_start); + __new_finish = uninitialized_fill_n(__new_finish, __n, __x); + __new_finish = uninitialized_copy(__position, end(), + __new_finish); + } + catch(...) + { + _Destroy(__new_start,__new_finish); + _M_deallocate(__new_start.base(),__len); + __throw_exception_again; + } + _Destroy(_M_start, _M_finish); + _M_deallocate(_M_start, _M_end_of_storage - _M_start); + _M_start = __new_start.base(); + _M_finish = __new_finish.base(); + _M_end_of_storage = __new_start.base() + __len; + } } } - template template + template template void vector<_Tp,_Alloc>:: _M_range_insert(iterator __pos, @@ -372,12 +373,11 @@ namespace std } } - template template + template template void vector<_Tp,_Alloc>:: - _M_range_insert(iterator __position, - _ForwardIterator __first, _ForwardIterator __last, - forward_iterator_tag) + _M_range_insert(iterator __position,_ForwardIterator __first, + _ForwardIterator __last, forward_iterator_tag) { if (__first != __last) { diff --git a/libstdc++-v3/testsuite/20_util/allocator_members.cc b/libstdc++-v3/testsuite/20_util/allocator_members.cc index 5d6cdd71600..8c40ab760f7 100644 --- a/libstdc++-v3/testsuite/20_util/allocator_members.cc +++ b/libstdc++-v3/testsuite/20_util/allocator_members.cc @@ -1,6 +1,6 @@ // 2001-06-14 Benjamin Kosnik -// Copyright (C) 2001 Free Software Foundation, Inc. +// Copyright (C) 2001, 2002 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the @@ -21,6 +21,7 @@ // 20.4.1.1 allocator members #include +#include #include #include @@ -42,7 +43,7 @@ void operator delete(void *v) throw() return std::free(v); } -int main(void) +void test01() { bool test = true; std::allocator obj; @@ -55,6 +56,34 @@ int main(void) obj.deallocate(pobj, 256); VERIFY( check_delete ); +} +// libstdc++/8230 +void test02() +{ + bool test = true; + try + { + std::allocator alloc; + const std::allocator::size_type n = alloc.max_size(); + int* p = alloc.allocate(n + 1); + p[n] = 2002; + } + catch(const std::bad_alloc& e) + { + // Allowed. + test = true; + } + catch(...) + { + test = false; + } + VERIFY( test ); +} + +int main() +{ + test01(); + test02(); return 0; } diff --git a/libstdc++-v3/testsuite/23_containers/vector_capacity.cc b/libstdc++-v3/testsuite/23_containers/vector_capacity.cc index e73b15a3246..8e9b6a8b1ab 100644 --- a/libstdc++-v3/testsuite/23_containers/vector_capacity.cc +++ b/libstdc++-v3/testsuite/23_containers/vector_capacity.cc @@ -99,9 +99,30 @@ void test02() } } +void test03() +{ + bool test = true; + std::vector v; + try + { + v.resize(v.max_size()); + v[v.max_size() - 1] = 2002; + } + catch (const std::bad_alloc& error) + { + test = true; + } + catch (...) + { + test = false; + } + VERIFY( test ); +} + int main() { test01(); test02(); + test03(); return 0; }