Makefile.in (OBJS-common): Add tree-ssa-propagate.o

* Makefile.in (OBJS-common): Add tree-ssa-propagate.o
	(tree-ssa-propagate.o): New rule.
	(GTFILES): Add tree-ssa-propagate.c.
	* tree-flow.h (struct stmt_ann_d): Remove field
	in_ccp_worklist.
	* tree-ssa-propagate.c: New file.
	* tree-ssa-propagate.h: New file.
	* tree-ssa-ccp.c: Re-write to use the routines from
	tree-ssa-propagate.c.

From-SVN: r86711
This commit is contained in:
Diego Novillo 2004-08-29 06:16:02 +00:00 committed by Diego Novillo
parent f108270b88
commit 750628d8bc
6 changed files with 1634 additions and 1397 deletions

View File

@ -1,3 +1,15 @@
2004-08-29 Diego Novillo <dnovillo@redhat.com>
* Makefile.in (OBJS-common): Add tree-ssa-propagate.o
(tree-ssa-propagate.o): New rule.
(GTFILES): Add tree-ssa-propagate.c.
* tree-flow.h (struct stmt_ann_d): Remove field
in_ccp_worklist.
* tree-ssa-propagate.c: New file.
* tree-ssa-propagate.h: New file.
* tree-ssa-ccp.c: Re-write to use the routines from
tree-ssa-propagate.c.
2004-08-28 Andrew Pinski <apinski@apple.com>
* tree-ssa-loop.c: Remove extra include of basic-block.h.

View File

@ -890,7 +890,7 @@ OBJS-common = \
tree-ssa-dom.o domwalk.o tree-tailcall.o gimple-low.o tree-iterator.o \
tree-phinodes.o tree-ssanames.o tree-sra.o tree-complex.o tree-ssa-loop.o \
tree-ssa-loop-niter.o tree-ssa-loop-manip.o tree-ssa-threadupdate.o \
tree-vectorizer.o tree-ssa-loop-ivcanon.o \
tree-vectorizer.o tree-ssa-loop-ivcanon.o tree-ssa-propagate.o \
alias.o bb-reorder.o bitmap.o builtins.o caller-save.o calls.o \
cfg.o cfganal.o cfgbuild.o cfgcleanup.o cfglayout.o cfgloop.o \
cfgloopanal.o cfgloopmanip.o loop-init.o loop-unswitch.o loop-unroll.o \
@ -1628,6 +1628,11 @@ tree-ssa-copy.o : tree-ssa-copy.c $(TREE_FLOW_H) $(CONFIG_H) $(SYSTEM_H) \
$(RTL_H) $(TREE_H) $(TM_P_H) $(EXPR_H) $(GGC_H) output.h diagnostic.h \
errors.h function.h $(TIMEVAR_H) $(TM_H) coretypes.h $(TREE_DUMP_H) \
$(BASIC_BLOCK_H) tree-pass.h langhooks.h
tree-ssa-propagate.o : tree-ssa-propagate.c $(TREE_FLOW_H) $(CONFIG_H) \
$(SYSTEM_H) $(RTL_H) $(TREE_H) $(TM_P_H) $(EXPR_H) $(GGC_H) output.h \
diagnostic.h errors.h function.h $(TIMEVAR_H) $(TM_H) coretypes.h \
$(TREE_DUMP_H) $(BASIC_BLOCK_H) tree-pass.h langhooks.h \
tree-ssa-propagate.h
tree-ssa-dom.o : tree-ssa-dom.c $(TREE_FLOW_H) $(CONFIG_H) $(SYSTEM_H) \
$(RTL_H) $(TREE_H) $(TM_P_H) $(EXPR_H) $(GGC_H) output.h diagnostic.h \
errors.h function.h $(TIMEVAR_H) $(TM_H) coretypes.h $(TREE_DUMP_H) \
@ -1923,10 +1928,11 @@ lcm.o : lcm.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) $(REGS_H) \
tree-ssa-dce.o : tree-ssa-dce.c $(CONFIG_H) system.h errors.h $(TREE_H) \
$(RTL_H) $(TM_P_H) $(TREE_FLOW_H) diagnostic.h $(TIMEVAR_H) $(TM_H) \
coretypes.h $(TREE_DUMP_H) tree-pass.h $(FLAGS_H)
tree-ssa-ccp.o : tree-ssa-ccp.c $(CONFIG_H) system.h errors.h $(TREE_H) \
$(RTL_H) $(TM_P_H) $(TREE_FLOW_H) diagnostic.h tree-inline.h \
$(TIMEVAR_H) $(TM_H) coretypes.h $(TREE_DUMP_H) $(TREE_GIMPLE_H) \
$(EXPR_H) tree-pass.h $(FLAGS_H) langhooks.h
tree-ssa-ccp.o : tree-ssa-ccp.c $(TREE_FLOW_H) $(CONFIG_H) \
$(SYSTEM_H) $(RTL_H) $(TREE_H) $(TM_P_H) $(EXPR_H) $(GGC_H) output.h \
diagnostic.h errors.h function.h $(TIMEVAR_H) $(TM_H) coretypes.h \
$(TREE_DUMP_H) $(BASIC_BLOCK_H) tree-pass.h langhooks.h \
tree-ssa-propagate.h
tree-sra.o : tree-sra.c $(CONFIG_H) system.h errors.h $(TREE_H) $(RTL_H) \
$(TM_P_H) $(TREE_FLOW_H) diagnostic.h tree-inline.h \
$(TIMEVAR_H) $(TM_H) coretypes.h $(TREE_DUMP_H) $(TREE_GIMPLE_H) \
@ -2393,7 +2399,7 @@ GTFILES = $(srcdir)/input.h $(srcdir)/coretypes.h \
$(srcdir)/c-objc-common.c $(srcdir)/c-common.c $(srcdir)/c-parse.in \
$(srcdir)/tree-ssanames.c $(srcdir)/tree-eh.c \
$(srcdir)/tree-phinodes.c $(srcdir)/tree-cfg.c \
$(srcdir)/tree-dfa.c $(srcdir)/tree-ssa-ccp.c \
$(srcdir)/tree-dfa.c $(srcdir)/tree-ssa-propagate.c \
$(srcdir)/tree-iterator.c $(srcdir)/gimplify.c \
$(srcdir)/tree-alias-type.h $(srcdir)/tree-alias-common.h \
$(srcdir)/tree-alias-type.c $(srcdir)/tree-alias-common.c \

View File

@ -248,11 +248,6 @@ struct stmt_ann_d GTY(())
need to be scanned again). */
unsigned modified : 1;
/* Nonzero if the statement is in the CCP worklist and has not been
"cancelled". If we ever need to use this bit outside CCP, then
it should be renamed. */
unsigned in_ccp_worklist: 1;
/* Nonzero if the statement makes aliased loads. */
unsigned makes_aliased_loads : 1;

File diff suppressed because it is too large Load Diff

674
gcc/tree-ssa-propagate.c Normal file
View File

@ -0,0 +1,674 @@
/* Generic SSA value propagation engine.
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "ggc.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"
/* This file implements a generic value propagation engine based on
the same propagation used by the SSA-CCP algorithm [1].
Propagation is performed by simulating the execution of every
statement that produces the value being propagated. Simulation
proceeds as follows:
1- Initially, all edges of the CFG are marked not executable and
the CFG worklist seeded with all the statements in the entry
basic block (block 0).
2- Every statement S is simulated with a call to the call-back
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
results:
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
interest and does not affect any of the work lists.
SSA_PROP_VARYING: The value produced by S cannot be determined
at compile time. Further simulation of S is not required.
If S is a conditional jump, all the outgoing edges for the
block are considered executable and added to the work
list.
SSA_PROP_INTERESTING: S produces a value that can be computed
at compile time. Its result can be propagated into the
statements that feed from S. Furhtermore, if S is a
conditional jump, only the edge known to be taken is added
to the work list. Edges that are known not to execute are
never simulated.
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
return value from SSA_PROP_VISIT_PHI has the same semantics as
described in #3.
4- Three work lists are kept. Statements are only added to these
lists if they produce one of SSA_PROP_INTERESTING or
SSA_PROP_VARYING.
CFG_BLOCKS contains the list of blocks to be simulated.
Blocks are added to this list if their incoming edges are
found executable.
VARYING_SSA_EDGES contains the list of statements that feed
from statements that produce an SSA_PROP_VARYING result.
These are simulated first to speed up processing.
INTERESTING_SSA_EDGES contains the list of statements that
feed from statements that produce an SSA_PROP_INTERESTING
result.
5- Simulation terminates when all three work lists are drained.
Before calling ssa_propagate, it is important to clear
DONT_SIMULATE_AGAIN for all the statements in the program that
should be simulated. This initialization allows an implementation
to specify which statements should never be simulated.
It is also important to compute def-use information before calling
ssa_propagate.
References:
[1] Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
[2] Building an Optimizing Compiler,
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
[3] Advanced Compiler Design and Implementation,
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
/* Function pointers used to parameterize the propagation engine. */
static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
/* Use the TREE_DEPRECATED bitflag to mark statements that have been
added to one of the SSA edges worklists. This flag is used to
avoid visiting statements unnecessarily when draining an SSA edge
worklist. If while simulating a basic block, we find a statement with
STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
processing from visiting it again. */
#define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
/* A bitmap to keep track of executable blocks in the CFG. */
static sbitmap executable_blocks;
/* Array of control flow edges on the worklist. */
static GTY(()) varray_type cfg_blocks = NULL;
static unsigned int cfg_blocks_num = 0;
static int cfg_blocks_tail;
static int cfg_blocks_head;
static sbitmap bb_in_list;
/* Worklist of SSA edges which will need reexamination as their
definition has changed. SSA edges are def-use edges in the SSA
web. For each D-U edge, we store the target statement or PHI node
U. */
static GTY(()) varray_type interesting_ssa_edges;
/* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
list of SSA edges is split into two. One contains all SSA edges
who need to be reexamined because their lattice value changed to
varying (this worklist), and the other contains all other SSA edges
to be reexamined (INTERESTING_SSA_EDGES).
Since most values in the program are VARYING, the ideal situation
is to move them to that lattice value as quickly as possible.
Thus, it doesn't make sense to process any other type of lattice
value until all VARYING values are propagated fully, which is one
thing using the VARYING worklist achieves. In addition, if we
don't use a separate worklist for VARYING edges, we end up with
situations where lattice values move from
UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
static GTY(()) varray_type varying_ssa_edges;
/* Return true if the block worklist empty. */
static inline bool
cfg_blocks_empty_p (void)
{
return (cfg_blocks_num == 0);
}
/* Add a basic block to the worklist. */
static void
cfg_blocks_add (basic_block bb)
{
if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
return;
if (TEST_BIT (bb_in_list, bb->index))
return;
if (cfg_blocks_empty_p ())
{
cfg_blocks_tail = cfg_blocks_head = 0;
cfg_blocks_num = 1;
}
else
{
cfg_blocks_num++;
if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
{
/* We have to grow the array now. Adjust to queue to occupy the
full space of the original array. */
cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
cfg_blocks_head = 0;
VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
}
else
cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
}
VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
SET_BIT (bb_in_list, bb->index);
}
/* Remove a block from the worklist. */
static basic_block
cfg_blocks_get (void)
{
basic_block bb;
bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
#ifdef ENABLE_CHECKING
if (cfg_blocks_empty_p () || !bb)
abort ();
#endif
cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
--cfg_blocks_num;
RESET_BIT (bb_in_list, bb->index);
return bb;
}
/* We have just defined a new value for VAR. If IS_VARYING is true,
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
them to INTERESTING_SSA_EDGES. */
static void
add_ssa_edge (tree var, bool is_varying)
{
tree stmt = SSA_NAME_DEF_STMT (var);
dataflow_t df = get_immediate_uses (stmt);
int num_uses = num_immediate_uses (df);
int i;
for (i = 0; i < num_uses; i++)
{
tree use_stmt = immediate_use (df, i);
if (!DONT_SIMULATE_AGAIN (use_stmt)
&& !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
{
STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
if (is_varying)
VARRAY_PUSH_TREE (varying_ssa_edges, use_stmt);
else
VARRAY_PUSH_TREE (interesting_ssa_edges, use_stmt);
}
}
}
/* Add edge E to the control flow worklist. */
static void
add_control_edge (edge e)
{
basic_block bb = e->dest;
if (bb == EXIT_BLOCK_PTR)
return;
/* If the edge had already been executed, skip it. */
if (e->flags & EDGE_EXECUTABLE)
return;
e->flags |= EDGE_EXECUTABLE;
/* If the block is already in the list, we're done. */
if (TEST_BIT (bb_in_list, bb->index))
return;
cfg_blocks_add (bb);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
e->src->index, e->dest->index);
}
/* Simulate the execution of STMT and update the work lists accordingly. */
static void
simulate_stmt (tree stmt)
{
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
edge taken_edge = NULL;
tree output_name = NULL_TREE;
/* Don't bother visiting statements that are already
considered varying by the propagator. */
if (DONT_SIMULATE_AGAIN (stmt))
return;
if (TREE_CODE (stmt) == PHI_NODE)
{
val = ssa_prop_visit_phi (stmt);
output_name = PHI_RESULT (stmt);
}
else
val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
if (val == SSA_PROP_VARYING)
{
DONT_SIMULATE_AGAIN (stmt) = 1;
/* If the statement produced a new varying value, add the SSA
edges coming out of OUTPUT_NAME. */
if (output_name)
add_ssa_edge (output_name, true);
/* If STMT transfers control out of its basic block, add
all outgoing edges to the work list. */
if (stmt_ends_bb_p (stmt))
{
edge e;
basic_block bb = bb_for_stmt (stmt);
for (e = bb->succ; e; e = e->succ_next)
add_control_edge (e);
}
}
else if (val == SSA_PROP_INTERESTING)
{
/* If the statement produced new value, add the SSA edges coming
out of OUTPUT_NAME. */
if (output_name)
add_ssa_edge (output_name, false);
/* If we know which edge is going to be taken out of this block,
add it to the CFG work list. */
if (taken_edge)
add_control_edge (taken_edge);
}
}
/* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
drain. This pops statements off the given WORKLIST and processes
them until there are no more statements on WORKLIST. */
static void
process_ssa_edge_worklist (varray_type *worklist)
{
/* Drain the entire worklist. */
while (VARRAY_ACTIVE_SIZE (*worklist) > 0)
{
basic_block bb;
/* Pull the statement to simulate off the worklist. */
tree stmt = VARRAY_TOP_TREE (*worklist);
VARRAY_POP (*worklist);
/* If this statement was already visited by simulate_block, then
we don't need to visit it again here. */
if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
continue;
/* STMT is no longer in a worklist. */
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
print_generic_stmt (dump_file, stmt, dump_flags);
}
bb = bb_for_stmt (stmt);
/* PHI nodes are always visited, regardless of whether or not
the destination block is executable. Otherwise, visit the
statement only if its block is marked executable. */
if (TREE_CODE (stmt) == PHI_NODE
|| TEST_BIT (executable_blocks, bb->index))
simulate_stmt (stmt);
}
}
/* Simulate the execution of BLOCK. Evaluate the statement associated
with each variable reference inside the block. */
static void
simulate_block (basic_block block)
{
tree phi;
/* There is nothing to do for the exit block. */
if (block == EXIT_BLOCK_PTR)
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nSimulating block %d\n", block->index);
/* Always simulate PHI nodes, even if we have simulated this block
before. */
for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
simulate_stmt (phi);
/* If this is the first time we've simulated this block, then we
must simulate each of its statements. */
if (!TEST_BIT (executable_blocks, block->index))
{
block_stmt_iterator j;
unsigned int normal_edge_count;
edge e, normal_edge;
/* Note that we have simulated this block. */
SET_BIT (executable_blocks, block->index);
for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
{
tree stmt = bsi_stmt (j);
/* If this statement is already in the worklist then
"cancel" it. The reevaluation implied by the worklist
entry will produce the same value we generate here and
thus reevaluating it again from the worklist is
pointless. */
if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
simulate_stmt (stmt);
}
/* We can not predict when abnormal edges will be executed, so
once a block is considered executable, we consider any
outgoing abnormal edges as executable.
At the same time, if this block has only one successor that is
reached by non-abnormal edges, then add that successor to the
worklist. */
normal_edge_count = 0;
normal_edge = NULL;
for (e = block->succ; e; e = e->succ_next)
{
if (e->flags & EDGE_ABNORMAL)
add_control_edge (e);
else
{
normal_edge_count++;
normal_edge = e;
}
}
if (normal_edge_count == 1)
add_control_edge (normal_edge);
}
}
/* Initialize local data structures and work lists. */
static void
ssa_prop_init (void)
{
edge e;
basic_block bb;
/* Worklists of SSA edges. */
VARRAY_TREE_INIT (interesting_ssa_edges, 20, "interesting_ssa_edges");
VARRAY_TREE_INIT (varying_ssa_edges, 20, "varying_ssa_edges");
executable_blocks = sbitmap_alloc (last_basic_block);
sbitmap_zero (executable_blocks);
bb_in_list = sbitmap_alloc (last_basic_block);
sbitmap_zero (bb_in_list);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_immediate_uses (dump_file);
VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
/* Initially assume that every edge in the CFG is not executable. */
FOR_EACH_BB (bb)
{
block_stmt_iterator si;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
for (e = bb->succ; e; e = e->succ_next)
e->flags &= ~EDGE_EXECUTABLE;
}
/* Seed the algorithm by adding the successors of the entry block to the
edge worklist. */
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
{
if (e->dest != EXIT_BLOCK_PTR)
{
e->flags |= EDGE_EXECUTABLE;
cfg_blocks_add (e->dest);
}
}
}
/* Free allocated storage. */
static void
ssa_prop_fini (void)
{
interesting_ssa_edges = NULL;
varying_ssa_edges = NULL;
cfg_blocks = NULL;
sbitmap_free (bb_in_list);
sbitmap_free (executable_blocks);
free_df ();
}
/* Get the main expression from statement STMT. */
tree
get_rhs (tree stmt)
{
enum tree_code code = TREE_CODE (stmt);
switch (code)
{
case RETURN_EXPR:
stmt = TREE_OPERAND (stmt, 0);
if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
return stmt;
/* FALLTHRU */
case MODIFY_EXPR:
stmt = TREE_OPERAND (stmt, 1);
if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
return TREE_OPERAND (stmt, 0);
else
return stmt;
case COND_EXPR:
return COND_EXPR_COND (stmt);
case SWITCH_EXPR:
return SWITCH_COND (stmt);
case GOTO_EXPR:
return GOTO_DESTINATION (stmt);
case LABEL_EXPR:
return LABEL_EXPR_LABEL (stmt);
default:
return stmt;
}
}
/* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
GIMPLE expression no changes are done and the function returns
false. */
bool
set_rhs (tree *stmt_p, tree expr)
{
tree stmt = *stmt_p, op;
enum tree_code code = TREE_CODE (expr);
stmt_ann_t ann;
tree var;
ssa_op_iter iter;
/* Verify the constant folded result is valid gimple. */
if (TREE_CODE_CLASS (code) == '2')
{
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
return false;
}
else if (TREE_CODE_CLASS (code) == '1')
{
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
return false;
}
switch (TREE_CODE (stmt))
{
case RETURN_EXPR:
op = TREE_OPERAND (stmt, 0);
if (TREE_CODE (op) != MODIFY_EXPR)
{
TREE_OPERAND (stmt, 0) = expr;
break;
}
stmt = op;
/* FALLTHRU */
case MODIFY_EXPR:
op = TREE_OPERAND (stmt, 1);
if (TREE_CODE (op) == WITH_SIZE_EXPR)
stmt = op;
TREE_OPERAND (stmt, 1) = expr;
break;
case COND_EXPR:
COND_EXPR_COND (stmt) = expr;
break;
case SWITCH_EXPR:
SWITCH_COND (stmt) = expr;
break;
case GOTO_EXPR:
GOTO_DESTINATION (stmt) = expr;
break;
case LABEL_EXPR:
LABEL_EXPR_LABEL (stmt) = expr;
break;
default:
/* Replace the whole statement with EXPR. If EXPR has no side
effects, then replace *STMT_P with an empty statement. */
ann = stmt_ann (stmt);
*stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
(*stmt_p)->common.ann = (tree_ann_t) ann;
if (TREE_SIDE_EFFECTS (expr))
{
/* Fix all the SSA_NAMEs created by *STMT_P to point to its new
replacement. */
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
{
if (TREE_CODE (var) == SSA_NAME)
SSA_NAME_DEF_STMT (var) = *stmt_p;
}
}
break;
}
return true;
}
/* Entry point to the propagation engine.
VISIT_STMT is called for every statement visited.
VISIT_PHI is called for every PHI node visited. */
void
ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
ssa_prop_visit_phi_fn visit_phi)
{
ssa_prop_visit_stmt = visit_stmt;
ssa_prop_visit_phi = visit_phi;
ssa_prop_init ();
/* Iterate until the worklists are empty. */
while (!cfg_blocks_empty_p ()
|| VARRAY_ACTIVE_SIZE (interesting_ssa_edges) > 0
|| VARRAY_ACTIVE_SIZE (varying_ssa_edges) > 0)
{
if (!cfg_blocks_empty_p ())
{
/* Pull the next block to simulate off the worklist. */
basic_block dest_block = cfg_blocks_get ();
simulate_block (dest_block);
}
/* In order to move things to varying as quickly as
possible,process the VARYING_SSA_EDGES worklist first. */
process_ssa_edge_worklist (&varying_ssa_edges);
/* Now process the INTERESTING_SSA_EDGES worklist. */
process_ssa_edge_worklist (&interesting_ssa_edges);
}
ssa_prop_fini ();
}
#include "gt-tree-ssa-propagate.h"

62
gcc/tree-ssa-propagate.h Normal file
View File

@ -0,0 +1,62 @@
/* Data structures and function declarations for the SSA value propagation
engine.
Copyright (C) 2001, 2003, 2004 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef _TREE_SSA_PROPAGATE_H
#define _TREE_SSA_PROPAGATE_H 1
/* Use the TREE_VISITED bitflag to mark statements and PHI nodes that
have been deemed varying and should not be simulated again. */
#define DONT_SIMULATE_AGAIN(T) TREE_VISITED (T)
/* Lattice values used for propagation purposes. Specific instances
of a propagation engine must return these values from the statement
and PHI visit functions to direct the engine. */
enum ssa_prop_result {
/* The statement produces nothing of interest. No edges will be
added to the work lists. */
SSA_PROP_NOT_INTERESTING,
/* The statement produces an interesting value. The set SSA_NAMEs
returned by SSA_PROP_VISIT_STMT should be added to
INTERESTING_SSA_EDGES. If the statement being visited is a
conditional jump, SSA_PROP_VISIT_STMT should indicate which edge
out of the basic block should be marked exectuable. */
SSA_PROP_INTERESTING,
/* The statement produces a varying (i.e., useless) value and
should not be simulated again. If the statement being visited
is a conditional jump, all the edges coming out of the block
will be considered executable. */
SSA_PROP_VARYING
};
/* Call-back functions used by the value propagation engine. */
typedef enum ssa_prop_result (*ssa_prop_visit_stmt_fn) (tree, edge *, tree *);
typedef enum ssa_prop_result (*ssa_prop_visit_phi_fn) (tree);
void ssa_propagate (ssa_prop_visit_stmt_fn, ssa_prop_visit_phi_fn);
tree get_rhs (tree);
bool set_rhs (tree *, tree);
#endif /* _TREE_SSA_PROPAGATE_H */