New template fibonacci_heap class introduced.

* fibonacci_heap.h: New file.
	(fibonacci_heap::insert): Created from fibheap_insert.
	(fibonacci_heap::empty): Created from fibheap_empty.
	(fibonacci_heap::nodes): Created from fibheap_nodes.
	(fibonacci_heap::min_key): Created from fibheap_min_key.
	(fibonacci_heap::decrease_key): Created from fibheap_replace_key.
	(fibonacci_heap::replace_key_data): Created from fibheap_replace_key_data.
	(fibonacci_heap::extract_min): Created from fibheap_extract_min.
	(fibonacci_heap::min): Created from fibheap_min.
	(fibonacci_heap::replace_data): Created from fibheap_replace_data.
	(fibonacci_heap::delete_node): Created from fibheap_delete_node.
	(fibonacci_heap::union_with): Created from fibheap_union.
	* ipa-inline.c (update_edge_key): New heap API is used.
	(update_caller_keys): Likewise.
	(update_callee_keys): Likewise.
	(lookup_recursive_calls): Likewise.
	(recursive_inlining): Likewise.
	(add_new_edges_to_heap): Likewise.
	(heap_edge_removal_hook): Likewise.
	(inline_small_functions): Likewise.

From-SVN: r217720
This commit is contained in:
Martin Liska 2014-11-18 17:09:11 +01:00 committed by Martin Liska
parent 1b85e4b23b
commit 4a91004954
3 changed files with 682 additions and 56 deletions

View File

@ -1,3 +1,26 @@
2014-11-18 Martin Liska <mliska@suse.cz>
* fibonacci_heap.h: New file.
(fibonacci_heap::insert): Created from fibheap_insert.
(fibonacci_heap::empty): Created from fibheap_empty.
(fibonacci_heap::nodes): Created from fibheap_nodes.
(fibonacci_heap::min_key): Created from fibheap_min_key.
(fibonacci_heap::decrease_key): Created from fibheap_replace_key.
(fibonacci_heap::replace_key_data): Created from fibheap_replace_key_data.
(fibonacci_heap::extract_min): Created from fibheap_extract_min.
(fibonacci_heap::min): Created from fibheap_min.
(fibonacci_heap::replace_data): Created from fibheap_replace_data.
(fibonacci_heap::delete_node): Created from fibheap_delete_node.
(fibonacci_heap::union_with): Created from fibheap_union.
* ipa-inline.c (update_edge_key): New heap API is used.
(update_caller_keys): Likewise.
(update_callee_keys): Likewise.
(lookup_recursive_calls): Likewise.
(recursive_inlining): Likewise.
(add_new_edges_to_heap): Likewise.
(heap_edge_removal_hook): Likewise.
(inline_small_functions): Likewise.
2014-11-18 Marek Polacek <polacek@redhat.com>
PR sanitizer/63866

608
gcc/fibonacci_heap.h Normal file
View File

@ -0,0 +1,608 @@
/* Vector API for GNU compiler.
Copyright (C) 1998-2014 Free Software Foundation, Inc.
Contributed by Daniel Berlin (dan@cgsoftware.com).
Re-implemented in C++ by Martin Liska <mliska@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Fibonacci heaps are somewhat complex, but, there's an article in
DDJ that explains them pretty well:
http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
Introduction to algorithms by Corman and Rivest also goes over them.
The original paper that introduced them is "Fibonacci heaps and their
uses in improved network optimization algorithms" by Tarjan and
Fredman (JACM 34(3), July 1987).
Amortized and real worst case time for operations:
ExtractMin: O(lg n) amortized. O(n) worst case.
DecreaseKey: O(1) amortized. O(lg n) worst case.
Insert: O(1) amortized.
Union: O(1) amortized. */
#ifndef GCC_FIBONACCI_HEAP_H
#define GCC_FIBONACCI_HEAP_H
/* Forward definition. */
template<class K, class V>
class fibonacci_heap;
/* Fibonacci heap node class. */
template<class K, class V>
class fibonacci_node
{
typedef fibonacci_node<K,V> fibonacci_node_t;
friend class fibonacci_heap<K,V>;
public:
/* Default constructor. */
fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this),
m_right (this), m_degree (0), m_mark (0)
{
}
/* Constructor for a node with given KEY. */
fibonacci_node (K key): m_parent (NULL), m_child (NULL), m_left (this),
m_right (this), m_key (key),
m_degree (0), m_mark (0)
{
}
/* Compare fibonacci node with OTHER node. */
int compare (fibonacci_node_t *other)
{
if (m_key < other->m_key)
return -1;
if (m_key > other->m_key)
return 1;
return 0;
}
/* Compare the node with a given KEY. */
int compare_data (K key)
{
return fibonacci_node_t (key).compare (this);
}
/* Remove fibonacci heap node. */
fibonacci_node_t *remove ();
/* Link the node with PARENT. */
void link (fibonacci_node_t *parent);
/* Return key associated with the node. */
K get_key ()
{
return m_key;
}
/* Return data associated with the node. */
V *get_data ()
{
return m_data;
}
private:
/* Put node B after this node. */
void insert_after (fibonacci_node_t *b);
/* Insert fibonacci node B after this node. */
void insert_before (fibonacci_node_t *b)
{
m_left->insert_after (b);
}
/* Parent node. */
fibonacci_node *m_parent;
/* Child node. */
fibonacci_node *m_child;
/* Left sibling. */
fibonacci_node *m_left;
/* Right node. */
fibonacci_node *m_right;
/* Key associated with node. */
K m_key;
/* Data associated with node. */
V *m_data;
#if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
/* Degree of the node. */
__extension__ unsigned long int m_degree : 31;
/* Mark of the node. */
__extension__ unsigned long int m_mark : 1;
#else
/* Degree of the node. */
unsigned int m_degree : 31;
/* Mark of the node. */
unsigned int m_mark : 1;
#endif
};
/* Fibonacci heap class. */
template<class K, class V>
class fibonacci_heap
{
typedef fibonacci_node<K,V> fibonacci_node_t;
friend class fibonacci_node<K,V>;
public:
/* Default constructor. */
fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL),
m_global_min_key (global_min_key)
{
}
/* Destructor. */
~fibonacci_heap ()
{
while (m_min != NULL)
delete (extract_minimum_node ());
}
/* Insert new node given by KEY and DATA associated with the key. */
fibonacci_node_t *insert (K key, V *data);
/* Return true if no entry is present. */
bool empty ()
{
return m_nodes == 0;
}
/* Return the number of nodes. */
size_t nodes ()
{
return m_nodes;
}
/* Return minimal key presented in the heap. */
K min_key ()
{
if (m_min == NULL)
gcc_unreachable ();
return m_min->m_key;
}
/* For given NODE, set new KEY value. */
K decrease_key (fibonacci_node_t *node, K key)
{
K okey = node->m_key;
gcc_assert (key <= okey);
replace_key_data (node, key, node->m_data);
return okey;
}
/* For given NODE, set new KEY and DATA value. */
V *replace_key_data (fibonacci_node_t *node, K key, V *data);
/* Extract minimum node in the heap. */
V *extract_min ();
/* Return value associated with minimum node in the heap. */
V *min ()
{
if (m_min == NULL)
return NULL;
return m_min->data;
}
/* Replace data associated with NODE and replace it with DATA. */
V *replace_data (fibonacci_node_t *node, V *data)
{
return replace_key_data (node, node->m_key, data);
}
/* Delete NODE in the heap. */
V *delete_node (fibonacci_node_t *node);
/* Union the heap with HEAPB. */
fibonacci_heap *union_with (fibonacci_heap *heapb);
private:
/* Insert it into the root list. */
void insert_root (fibonacci_node_t *node);
/* Remove NODE from PARENT's child list. */
void cut (fibonacci_node_t *node, fibonacci_node_t *parent);
/* Process cut of node Y and do it recursivelly. */
void cascading_cut (fibonacci_node_t *y);
/* Extract minimum node from the heap. */
fibonacci_node_t * extract_minimum_node ();
/* Remove root NODE from the heap. */
void remove_root (fibonacci_node_t *node);
/* Consolidate heap. */
void consolidate ();
/* Number of nodes. */
size_t m_nodes;
/* Minimum node of the heap. */
fibonacci_node_t *m_min;
/* Root node of the heap. */
fibonacci_node_t *m_root;
/* Global minimum given in the heap construction. */
K m_global_min_key;
};
/* Remove fibonacci heap node. */
template<class K, class V>
fibonacci_node<K,V> *
fibonacci_node<K,V>::remove ()
{
fibonacci_node<K,V> *ret;
if (this == m_left)
ret = NULL;
else
ret = m_left;
if (m_parent != NULL && m_parent->m_child == this)
m_parent->m_child = ret;
m_right->m_left = m_left;
m_left->m_right = m_right;
m_parent = NULL;
m_left = this;
m_right = this;
return ret;
}
/* Link the node with PARENT. */
template<class K, class V>
void
fibonacci_node<K,V>::link (fibonacci_node<K,V> *parent)
{
if (parent->m_child == NULL)
parent->m_child = this;
else
parent->m_child->insert_before (this);
m_parent = parent;
parent->m_degree++;
m_mark = 0;
}
/* Put node B after this node. */
template<class K, class V>
void
fibonacci_node<K,V>::insert_after (fibonacci_node<K,V> *b)
{
fibonacci_node<K,V> *a = this;
if (a == a->m_right)
{
a->m_right = b;
a->m_left = b;
b->m_right = a;
b->m_left = a;
}
else
{
b->m_right = a->m_right;
a->m_right->m_left = b;
a->m_right = b;
b->m_left = a;
}
}
/* Insert new node given by KEY and DATA associated with the key. */
template<class K, class V>
fibonacci_node<K,V>*
fibonacci_heap<K,V>::insert (K key, V *data)
{
/* Create the new node. */
fibonacci_node<K,V> *node = new fibonacci_node_t ();
/* Set the node's data. */
node->m_data = data;
node->m_key = key;
/* Insert it into the root list. */
insert_root (node);
/* If their was no minimum, or this key is less than the min,
it's the new min. */
if (m_min == NULL || node->m_key < m_min->m_key)
m_min = node;
m_nodes++;
return node;
}
/* For given NODE, set new KEY and DATA value. */
template<class K, class V>
V*
fibonacci_heap<K,V>::replace_key_data (fibonacci_node<K,V> *node, K key,
V *data)
{
V *odata;
K okey;
fibonacci_node<K,V> *y;
/* If we wanted to, we could actually do a real increase by redeleting and
inserting. However, this would require O (log n) time. So just bail out
for now. */
if (node->compare_data (key) > 0)
return NULL;
odata = node->m_data;
okey = node->m_key;
node->m_data = data;
node->m_key = key;
y = node->m_parent;
/* Short-circuit if the key is the same, as we then don't have to
do anything. Except if we're trying to force the new node to
be the new minimum for delete. */
if (okey == key && okey != m_global_min_key)
return odata;
/* These two compares are specifically <= 0 to make sure that in the case
of equality, a node we replaced the data on, becomes the new min. This
is needed so that delete's call to extractmin gets the right node. */
if (y != NULL && node->compare (y) <= 0)
{
cut (node, y);
cascading_cut (y);
}
if (node->compare (m_min) <= 0)
m_min = node;
return odata;
}
/* Extract minimum node in the heap. */
template<class K, class V>
V*
fibonacci_heap<K,V>::extract_min ()
{
fibonacci_node<K,V> *z;
V *ret = NULL;
/* If we don't have a min set, it means we have no nodes. */
if (m_min != NULL)
{
/* Otherwise, extract the min node, free the node, and return the
node's data. */
z = extract_minimum_node ();
ret = z->m_data;
delete (z);
}
return ret;
}
/* Delete NODE in the heap. */
template<class K, class V>
V*
fibonacci_heap<K,V>::delete_node (fibonacci_node<K,V> *node)
{
V *ret = node->m_data;
/* To perform delete, we just make it the min key, and extract. */
decrease_key (node, m_global_min_key);
if (node != m_min)
{
fprintf (stderr, "Can't force minimum on fibheap.\n");
abort ();
}
extract_min ();
return ret;
}
/* Union the heap with HEAPB. */
template<class K, class V>
fibonacci_heap<K,V>*
fibonacci_heap<K,V>::union_with (fibonacci_heap<K,V> *heapb)
{
fibonacci_heap<K,V> *heapa = this;
fibonacci_node<K,V> *a_root, *b_root, *temp;
/* If one of the heaps is empty, the union is just the other heap. */
if ((a_root = heapa->m_root) == NULL)
{
delete (heapa);
return heapb;
}
if ((b_root = heapb->m_root) == NULL)
{
delete (heapb);
return heapa;
}
/* Merge them to the next nodes on the opposite chain. */
a_root->m_left->m_right = b_root;
b_root->m_left->m_right = a_root;
temp = a_root->m_left;
a_root->m_left = b_root->m_left;
b_root->m_left = temp;
heapa->m_nodes += heapb->m_nodes;
/* And set the new minimum, if it's changed. */
if (heapb->min->compare (heapa->min) < 0)
heapa->m_min = heapb->m_min;
delete (heapb);
return heapa;
}
/* Insert it into the root list. */
template<class K, class V>
void
fibonacci_heap<K,V>::insert_root (fibonacci_node_t *node)
{
/* If the heap is currently empty, the new node becomes the singleton
circular root list. */
if (m_root == NULL)
{
m_root = node;
node->m_left = node;
node->m_right = node;
return;
}
/* Otherwise, insert it in the circular root list between the root
and it's right node. */
m_root->insert_after (node);
}
/* Remove NODE from PARENT's child list. */
template<class K, class V>
void
fibonacci_heap<K,V>::cut (fibonacci_node<K,V> *node,
fibonacci_node<K,V> *parent)
{
node->remove ();
parent->m_degree--;
insert_root (node);
node->m_parent = NULL;
node->m_mark = 0;
}
/* Process cut of node Y and do it recursivelly. */
template<class K, class V>
void
fibonacci_heap<K,V>::cascading_cut (fibonacci_node<K,V> *y)
{
fibonacci_node<K,V> *z;
while ((z = y->m_parent) != NULL)
{
if (y->m_mark == 0)
{
y->m_mark = 1;
return;
}
else
{
cut (y, z);
y = z;
}
}
}
/* Extract minimum node from the heap. */
template<class K, class V>
fibonacci_node<K,V>*
fibonacci_heap<K,V>::extract_minimum_node ()
{
fibonacci_node<K,V> *ret = m_min;
fibonacci_node<K,V> *x, *y, *orig;
/* Attach the child list of the minimum node to the root list of the heap.
If there is no child list, we don't do squat. */
for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y)
{
if (orig == NULL)
orig = x;
y = x->m_right;
x->m_parent = NULL;
insert_root (x);
}
/* Remove the old root. */
remove_root (ret);
m_nodes--;
/* If we are left with no nodes, then the min is NULL. */
if (m_nodes == 0)
m_min = NULL;
else
{
/* Otherwise, consolidate to find new minimum, as well as do the reorg
work that needs to be done. */
m_min = ret->m_right;
consolidate ();
}
return ret;
}
/* Remove root NODE from the heap. */
template<class K, class V>
void
fibonacci_heap<K,V>::remove_root (fibonacci_node<K,V> *node)
{
if (node->m_left == node)
m_root = NULL;
else
m_root = node->remove ();
}
/* Consolidate heap. */
template<class K, class V>
void fibonacci_heap<K,V>::consolidate ()
{
int D = 1 + 8 * sizeof (long);
auto_vec<fibonacci_node<K,V> *> a (D);
a.safe_grow_cleared (D);
fibonacci_node<K,V> *w, *x, *y;
int i, d;
while ((w = m_root) != NULL)
{
x = w;
remove_root (w);
d = x->m_degree;
while (a[d] != NULL)
{
y = a[d];
if (x->compare (y) > 0)
std::swap (x, y);
y->link (x);
a[d] = NULL;
d++;
}
a[d] = x;
}
m_min = NULL;
for (i = 0; i < D; i++)
if (a[i] != NULL)
{
insert_root (a[i]);
if (m_min == NULL || a[i]->compare (m_min) < 0)
m_min = a[i];
}
}
#endif // GCC_FIBONACCI_HEAP_H

View File

@ -102,7 +102,6 @@ along with GCC; see the file COPYING3. If not see
#include "diagnostic.h"
#include "gimple-pretty-print.h"
#include "params.h"
#include "fibheap.h"
#include "intl.h"
#include "tree-pass.h"
#include "coverage.h"
@ -138,6 +137,10 @@ along with GCC; see the file COPYING3. If not see
#include "auto-profile.h"
#include "cilk.h"
#include "builtins.h"
#include "fibonacci_heap.h"
typedef fibonacci_heap <long, cgraph_edge> edge_heap_t;
typedef fibonacci_node <long, cgraph_edge> edge_heap_node_t;
/* Statistics we collect about inlining algorithm. */
static int overall_size;
@ -1076,19 +1079,19 @@ edge_badness (struct cgraph_edge *edge, bool dump)
/* Recompute badness of EDGE and update its key in HEAP if needed. */
static inline void
update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
{
int badness = edge_badness (edge, false);
if (edge->aux)
{
fibnode_t n = (fibnode_t) edge->aux;
gcc_checking_assert (n->data == edge);
edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
gcc_checking_assert (n->get_data () == edge);
/* fibheap_replace_key only decrease the keys.
/* fibonacci_heap::replace_key only decrease the keys.
When we increase the key we do not update heap
and instead re-insert the element once it becomes
a minimum of heap. */
if (badness < n->key)
if (badness < n->get_key ())
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
@ -1098,11 +1101,11 @@ update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
edge->caller->order,
xstrdup (edge->callee->name ()),
edge->callee->order,
(int)n->key,
(int)n->get_key (),
badness);
}
fibheap_replace_key (heap, n, badness);
gcc_checking_assert (n->key == badness);
heap->decrease_key (n, badness);
gcc_checking_assert (n->get_key () == badness);
}
}
else
@ -1117,7 +1120,7 @@ update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
edge->callee->order,
badness);
}
edge->aux = fibheap_insert (heap, badness, edge);
edge->aux = heap->insert (badness, edge);
}
}
@ -1180,7 +1183,7 @@ reset_edge_caches (struct cgraph_node *node)
it is inlinable. Otherwise check all edges. */
static void
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
bitmap updated_nodes,
struct cgraph_edge *check_inlinablity_for)
{
@ -1211,7 +1214,7 @@ update_caller_keys (fibheap_t heap, struct cgraph_node *node,
else if (edge->aux)
{
report_inline_failed_reason (edge);
fibheap_delete_node (heap, (fibnode_t) edge->aux);
heap->delete_node ((edge_heap_node_t *) edge->aux);
edge->aux = NULL;
}
}
@ -1226,7 +1229,7 @@ update_caller_keys (fibheap_t heap, struct cgraph_node *node,
created edges into heap. */
static void
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
bitmap updated_nodes)
{
struct cgraph_edge *e = node->callees;
@ -1255,7 +1258,7 @@ update_callee_keys (fibheap_t heap, struct cgraph_node *node,
else if (e->aux)
{
report_inline_failed_reason (e);
fibheap_delete_node (heap, (fibnode_t) e->aux);
heap->delete_node ((edge_heap_node_t *) e->aux);
e->aux = NULL;
}
}
@ -1280,7 +1283,7 @@ update_callee_keys (fibheap_t heap, struct cgraph_node *node,
static void
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
fibheap_t heap)
edge_heap_t *heap)
{
struct cgraph_edge *e;
enum availability avail;
@ -1292,10 +1295,9 @@ lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
{
/* When profile feedback is available, prioritize by expected number
of calls. */
fibheap_insert (heap,
!max_count ? -e->frequency
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
e);
heap->insert (!max_count ? -e->frequency
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
e);
}
for (e = where->callees; e; e = e->next_callee)
if (!e->inline_failed)
@ -1312,7 +1314,7 @@ recursive_inlining (struct cgraph_edge *edge,
vec<cgraph_edge *> *new_edges)
{
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
fibheap_t heap;
edge_heap_t heap (LONG_MIN);
struct cgraph_node *node;
struct cgraph_edge *e;
struct cgraph_node *master_clone = NULL, *next;
@ -1329,13 +1331,9 @@ recursive_inlining (struct cgraph_edge *edge,
/* Make sure that function is small enough to be considered for inlining. */
if (estimate_size_after_inlining (node, edge) >= limit)
return false;
heap = fibheap_new ();
lookup_recursive_calls (node, node, heap);
if (fibheap_empty (heap))
{
fibheap_delete (heap);
return false;
}
lookup_recursive_calls (node, node, &heap);
if (heap.empty ())
return false;
if (dump_file)
fprintf (dump_file,
@ -1343,10 +1341,9 @@ recursive_inlining (struct cgraph_edge *edge,
node->name ());
/* Do the inlining and update list of recursive call during process. */
while (!fibheap_empty (heap))
while (!heap.empty ())
{
struct cgraph_edge *curr
= (struct cgraph_edge *) fibheap_extract_min (heap);
struct cgraph_edge *curr = heap.extract_min ();
struct cgraph_node *cnode, *dest = curr->callee;
if (!can_inline_edge_p (curr, true))
@ -1408,13 +1405,12 @@ recursive_inlining (struct cgraph_edge *edge,
}
inline_call (curr, false, new_edges, &overall_size, true);
lookup_recursive_calls (node, curr->callee, heap);
lookup_recursive_calls (node, curr->callee, &heap);
n++;
}
if (!fibheap_empty (heap) && dump_file)
if (!heap.empty () && dump_file)
fprintf (dump_file, " Recursive inlining growth limit met.\n");
fibheap_delete (heap);
if (!master_clone)
return false;
@ -1459,7 +1455,7 @@ compute_max_insns (int insns)
/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
static void
add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge *> new_edges)
add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
{
while (new_edges.length () > 0)
{
@ -1469,7 +1465,7 @@ add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge *> new_edges)
if (edge->inline_failed
&& can_inline_edge_p (edge, true)
&& want_inline_small_function_p (edge, true))
edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
edge->aux = heap->insert (edge_badness (edge, false), edge);
}
}
@ -1482,7 +1478,7 @@ heap_edge_removal_hook (struct cgraph_edge *e, void *data)
reset_node_growth_cache (e->callee);
if (e->aux)
{
fibheap_delete_node ((fibheap_t)data, (fibnode_t)e->aux);
((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
e->aux = NULL;
}
}
@ -1540,7 +1536,7 @@ speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
See if we can remove speculation. */
static void
resolve_noninline_speculation (fibheap_t edge_heap, struct cgraph_edge *edge)
resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
{
if (edge->speculative && !speculation_useful_p (edge, false))
{
@ -1572,7 +1568,7 @@ inline_small_functions (void)
{
struct cgraph_node *node;
struct cgraph_edge *edge;
fibheap_t edge_heap = fibheap_new ();
edge_heap_t edge_heap (LONG_MIN);
bitmap updated_nodes = BITMAP_ALLOC (NULL);
int min_size, max_size;
auto_vec<cgraph_edge *> new_indirect_edges;
@ -1583,7 +1579,7 @@ inline_small_functions (void)
new_indirect_edges.create (8);
edge_removal_hook_holder
= symtab->add_edge_removal_hook (&heap_edge_removal_hook, edge_heap);
= symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
/* Compute overall unit size and other global parameters used by badness
metrics. */
@ -1662,7 +1658,7 @@ inline_small_functions (void)
&& edge->inline_failed)
{
gcc_assert (!edge->aux);
update_edge_key (edge_heap, edge);
update_edge_key (&edge_heap, edge);
}
if (edge->speculative && !speculation_useful_p (edge, edge->aux != NULL))
{
@ -1677,7 +1673,7 @@ inline_small_functions (void)
inline_update_overall_summary (where);
reset_node_growth_cache (where);
reset_edge_caches (where);
update_caller_keys (edge_heap, where,
update_caller_keys (&edge_heap, where,
updated_nodes, NULL);
bitmap_clear (updated_nodes);
}
@ -1687,16 +1683,16 @@ inline_small_functions (void)
|| !max_count
|| (profile_info && flag_branch_probabilities));
while (!fibheap_empty (edge_heap))
while (!edge_heap.empty ())
{
int old_size = overall_size;
struct cgraph_node *where, *callee;
int badness = fibheap_min_key (edge_heap);
int badness = edge_heap.min_key ();
int current_badness;
int cached_badness;
int growth;
edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
edge = edge_heap.extract_min ();
gcc_assert (edge->aux);
edge->aux = NULL;
if (!edge->inline_failed || !edge->callee->analyzed)
@ -1717,13 +1713,13 @@ inline_small_functions (void)
gcc_assert (current_badness >= badness);
if (current_badness != badness)
{
edge->aux = fibheap_insert (edge_heap, current_badness, edge);
edge->aux = edge_heap.insert (current_badness, edge);
continue;
}
if (!can_inline_edge_p (edge, true))
{
resolve_noninline_speculation (edge_heap, edge);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
@ -1757,13 +1753,13 @@ inline_small_functions (void)
{
edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
report_inline_failed_reason (edge);
resolve_noninline_speculation (edge_heap, edge);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
if (!want_inline_small_function_p (edge, true))
{
resolve_noninline_speculation (edge_heap, edge);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
@ -1781,15 +1777,15 @@ inline_small_functions (void)
? &new_indirect_edges : NULL))
{
edge->inline_failed = CIF_RECURSIVE_INLINING;
resolve_noninline_speculation (edge_heap, edge);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
reset_edge_caches (where);
/* Recursive inliner inlines all recursive calls of the function
at once. Consequently we need to update all callee keys. */
if (flag_indirect_inlining)
add_new_edges_to_heap (edge_heap, new_indirect_edges);
update_callee_keys (edge_heap, where, updated_nodes);
add_new_edges_to_heap (&edge_heap, new_indirect_edges);
update_callee_keys (&edge_heap, where, updated_nodes);
bitmap_clear (updated_nodes);
}
else
@ -1817,7 +1813,7 @@ inline_small_functions (void)
edge->inline_failed
= (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
resolve_noninline_speculation (edge_heap, edge);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
else if (depth && dump_file)
@ -1826,12 +1822,12 @@ inline_small_functions (void)
gcc_checking_assert (!callee->global.inlined_to);
inline_call (edge, true, &new_indirect_edges, &overall_size, true);
if (flag_indirect_inlining)
add_new_edges_to_heap (edge_heap, new_indirect_edges);
add_new_edges_to_heap (&edge_heap, new_indirect_edges);
reset_edge_caches (edge->callee);
reset_node_growth_cache (callee);
update_callee_keys (edge_heap, where, updated_nodes);
update_callee_keys (&edge_heap, where, updated_nodes);
}
where = edge->caller;
if (where->global.inlined_to)
@ -1843,7 +1839,7 @@ inline_small_functions (void)
inlined into (since it's body size changed) and for the functions
called by function we inlined (since number of it inlinable callers
might change). */
update_caller_keys (edge_heap, where, updated_nodes, NULL);
update_caller_keys (&edge_heap, where, updated_nodes, NULL);
bitmap_clear (updated_nodes);
if (dump_file)
@ -1867,7 +1863,6 @@ inline_small_functions (void)
}
free_growth_caches ();
fibheap_delete (edge_heap);
if (dump_file)
fprintf (dump_file,
"Unit growth for small function inlining: %i->%i (%i%%)\n",