range-op: Implement floating point multiplication fold_range [PR107569]

The following patch implements frange multiplication, including the
special case of x * x.  The callers don't tell us that it is x * x,
just that it is either z = x * x or if (x == y) z = x * y;
For irange that makes no difference, but for frange it can mean
x is -0.0 and y is 0.0 if they have the same range that includes both
signed and unsigned zeros, so we need to assume result could be -0.0.

The patch causes one regression:
+FAIL: gcc.dg/fold-overflow-1.c scan-assembler-times 2139095040 2
but that is already tracked in PR107608 and affects not just the newly
added multiplication, but addition and other floating point operations
(and doesn't seem like a ranger bug but dce or whatever else).

2022-11-12  Jakub Jelinek  <jakub@redhat.com>

	PR tree-optimization/107569
	PR tree-optimization/107591
	* range-op.h (range_operator_float::rv_fold): Add relation_kind
	argument.
	* range-op-float.cc (range_operator_float::fold_range): Name
	last argument trio and pass trio.op1_op2 () as last argument to
	rv_fold.
	(range_operator_float::rv_fold): Add relation_kind argument.
	(foperator_plus::rv_fold, foperator_minus::rv_fold): Likewise.
	(foperator_mult): New class.
	(floating_op_table::floating_op_table): Use foperator_mult for
	MULT_EXPR.
This commit is contained in:
Jakub Jelinek 2022-11-12 09:33:01 +01:00
parent f5225dbf5c
commit 2f7f9edd28
2 changed files with 187 additions and 7 deletions

View File

@ -51,7 +51,7 @@ along with GCC; see the file COPYING3. If not see
bool
range_operator_float::fold_range (frange &r, tree type,
const frange &op1, const frange &op2,
relation_trio) const
relation_trio trio) const
{
if (empty_range_varying (r, type, op1, op2))
return true;
@ -65,7 +65,7 @@ range_operator_float::fold_range (frange &r, tree type,
bool maybe_nan;
rv_fold (lb, ub, maybe_nan, type,
op1.lower_bound (), op1.upper_bound (),
op2.lower_bound (), op2.upper_bound ());
op2.lower_bound (), op2.upper_bound (), trio.op1_op2 ());
// Handle possible NANs by saturating to the appropriate INF if only
// one end is a NAN. If both ends are a NAN, just return a NAN.
@ -103,8 +103,8 @@ range_operator_float::rv_fold (REAL_VALUE_TYPE &lb,
const REAL_VALUE_TYPE &lh_lb ATTRIBUTE_UNUSED,
const REAL_VALUE_TYPE &lh_ub ATTRIBUTE_UNUSED,
const REAL_VALUE_TYPE &rh_lb ATTRIBUTE_UNUSED,
const REAL_VALUE_TYPE &rh_ub ATTRIBUTE_UNUSED)
const
const REAL_VALUE_TYPE &rh_ub ATTRIBUTE_UNUSED,
relation_kind) const
{
lb = dconstninf;
ub = dconstinf;
@ -1868,7 +1868,8 @@ class foperator_plus : public range_operator_float
const REAL_VALUE_TYPE &lh_lb,
const REAL_VALUE_TYPE &lh_ub,
const REAL_VALUE_TYPE &rh_lb,
const REAL_VALUE_TYPE &rh_ub) const final override
const REAL_VALUE_TYPE &rh_ub,
relation_kind) const final override
{
frange_arithmetic (PLUS_EXPR, type, lb, lh_lb, rh_lb, dconstninf);
frange_arithmetic (PLUS_EXPR, type, ub, lh_ub, rh_ub, dconstinf);
@ -1892,7 +1893,8 @@ class foperator_minus : public range_operator_float
const REAL_VALUE_TYPE &lh_lb,
const REAL_VALUE_TYPE &lh_ub,
const REAL_VALUE_TYPE &rh_lb,
const REAL_VALUE_TYPE &rh_ub) const final override
const REAL_VALUE_TYPE &rh_ub,
relation_kind) const final override
{
frange_arithmetic (MINUS_EXPR, type, lb, lh_lb, rh_ub, dconstninf);
frange_arithmetic (MINUS_EXPR, type, ub, lh_ub, rh_lb, dconstinf);
@ -1908,6 +1910,182 @@ class foperator_minus : public range_operator_float
}
} fop_minus;
class foperator_mult : public range_operator_float
{
void rv_fold (REAL_VALUE_TYPE &lb, REAL_VALUE_TYPE &ub, bool &maybe_nan,
tree type,
const REAL_VALUE_TYPE &lh_lb,
const REAL_VALUE_TYPE &lh_ub,
const REAL_VALUE_TYPE &rh_lb,
const REAL_VALUE_TYPE &rh_ub,
relation_kind kind) const final override
{
bool is_square
= (kind == VREL_EQ
&& real_equal (&lh_lb, &rh_lb)
&& real_equal (&lh_ub, &rh_ub)
&& real_isneg (&lh_lb) == real_isneg (&rh_lb)
&& real_isneg (&lh_ub) == real_isneg (&rh_ub));
maybe_nan = false;
// x * x never produces a new NAN and we only multiply the same
// values, so the 0 * INF problematic cases never appear there.
if (!is_square)
{
// [+-0, +-0] * [+INF,+INF] (or [-INF,-INF] or swapped is a known NAN.
if ((real_iszero (&lh_lb)
&& real_iszero (&lh_ub)
&& real_isinf (&rh_lb)
&& real_isinf (&rh_ub, real_isneg (&rh_lb)))
|| (real_iszero (&rh_lb)
&& real_iszero (&rh_ub)
&& real_isinf (&lh_lb)
&& real_isinf (&lh_ub, real_isneg (&lh_lb))))
{
real_nan (&lb, "", 0, TYPE_MODE (type));
ub = lb;
maybe_nan = true;
return;
}
// Otherwise, if one range includes zero and the other ends with +-INF,
// it is a maybe NAN.
if ((real_compare (LE_EXPR, &lh_lb, &dconst0)
&& real_compare (GE_EXPR, &lh_ub, &dconst0)
&& (real_isinf (&rh_lb) || real_isinf (&rh_ub)))
|| (real_compare (LE_EXPR, &rh_lb, &dconst0)
&& real_compare (GE_EXPR, &rh_ub, &dconst0)
&& (real_isinf (&lh_lb) || real_isinf (&lh_ub))))
{
maybe_nan = true;
bool must_have_signbit_zero = false;
bool must_have_signbit_nonzero = false;
if (real_isneg (&lh_lb) == real_isneg (&lh_ub)
&& real_isneg (&rh_lb) == real_isneg (&rh_ub))
{
if (real_isneg (&lh_lb) == real_isneg (&rh_ub))
must_have_signbit_zero = true;
else
must_have_signbit_nonzero = true;
}
// If one of the ranges that includes INF is singleton
// and the other range includes zero, the resulting
// range is INF and NAN, because the 0 * INF boundary
// case will be NAN, but already nextafter (0, 1) * INF
// is INF.
if ((real_isinf (&lh_lb)
&& real_isinf (&lh_ub, real_isneg (&lh_lb)))
|| (real_isinf (&rh_lb)
&& real_isinf (&rh_ub, real_isneg (&rh_lb))))
{
// If all the boundary signs are the same, [+INF, +INF].
if (must_have_signbit_zero)
ub = lb = dconstinf;
// If the two multiplicands have always different sign,
// [-INF, -INF].
else if (must_have_signbit_nonzero)
ub = lb = dconstninf;
// Otherwise -> [-INF, +INF] (-INF or +INF).
else
{
lb = dconstninf;
ub = dconstinf;
}
return;
}
// If one of the multiplicands must be zero, the resulting
// range is +-0 and NAN.
if ((real_iszero (&lh_lb) && real_iszero (&lh_ub))
|| (real_iszero (&rh_lb) && real_iszero (&rh_ub)))
{
ub = lb = dconst0;
// If all the boundary signs are the same, [+0.0, +0.0].
if (must_have_signbit_zero)
;
// If divisor and dividend must have different signs,
// [-0.0, -0.0].
else if (must_have_signbit_nonzero)
ub = lb = real_value_negate (&dconst0);
// Otherwise -> [-0.0, +0.0].
else
lb = real_value_negate (&dconst0);
return;
}
// Otherwise one of the multiplicands could be
// [0.0, nextafter (0.0, 1.0)] and the [DBL_MAX, INF]
// or similarly with different signs. 0.0 * DBL_MAX
// is still 0.0, nextafter (0.0, 1.0) * INF is still INF,
// so if the signs are always the same or always different,
// result is [+0.0, +INF] or [-INF, -0.0], otherwise VARYING.
if (must_have_signbit_zero)
{
lb = dconst0;
ub = dconstinf;
}
else if (must_have_signbit_nonzero)
{
lb = dconstninf;
ub = real_value_negate (&dconst0);
}
else
{
lb = dconstninf;
ub = dconstinf;
}
return;
}
}
REAL_VALUE_TYPE cp[8];
// Do a cross-product.
frange_arithmetic (MULT_EXPR, type, cp[0], lh_lb, rh_lb, dconstninf);
frange_arithmetic (MULT_EXPR, type, cp[4], lh_lb, rh_lb, dconstinf);
if (is_square)
{
// For x * x we can just do max (lh_lb * lh_lb, lh_ub * lh_ub)
// as maximum and -0.0 as minimum if 0.0 is in the range,
// otherwise min (lh_lb * lh_lb, lh_ub * lh_ub).
// -0.0 rather than 0.0 because VREL_EQ doesn't prove that
// x and y are bitwise equal, just that they compare equal.
if (real_compare (LE_EXPR, &lh_lb, &dconst0)
&& real_compare (GE_EXPR, &lh_ub, &dconst0))
cp[1] = real_value_negate (&dconst0);
else
cp[1] = cp[0];
cp[2] = cp[0];
cp[5] = cp[4];
cp[6] = cp[4];
}
else
{
frange_arithmetic (MULT_EXPR, type, cp[1], lh_lb, rh_ub, dconstninf);
frange_arithmetic (MULT_EXPR, type, cp[5], lh_lb, rh_ub, dconstinf);
frange_arithmetic (MULT_EXPR, type, cp[2], lh_ub, rh_lb, dconstninf);
frange_arithmetic (MULT_EXPR, type, cp[6], lh_ub, rh_lb, dconstinf);
}
frange_arithmetic (MULT_EXPR, type, cp[3], lh_ub, rh_ub, dconstninf);
frange_arithmetic (MULT_EXPR, type, cp[7], lh_ub, rh_ub, dconstinf);
for (int i = 1; i < 4; ++i)
{
if (real_less (&cp[i], &cp[0])
|| (real_iszero (&cp[0]) && real_isnegzero (&cp[i])))
std::swap (cp[i], cp[0]);
if (real_less (&cp[4], &cp[i + 4])
|| (real_isnegzero (&cp[4]) && real_iszero (&cp[i + 4])))
std::swap (cp[i + 4], cp[4]);
}
lb = cp[0];
ub = cp[4];
}
} fop_mult;
// Instantiate a range_op_table for floating point operations.
static floating_op_table global_floating_table;
@ -1942,6 +2120,7 @@ floating_op_table::floating_op_table ()
set (NEGATE_EXPR, fop_negate);
set (PLUS_EXPR, fop_plus);
set (MINUS_EXPR, fop_minus);
set (MULT_EXPR, fop_mult);
}
// Return a pointer to the range_operator_float instance, if there is

View File

@ -128,7 +128,8 @@ public:
const REAL_VALUE_TYPE &lh_lb,
const REAL_VALUE_TYPE &lh_ub,
const REAL_VALUE_TYPE &rh_lb,
const REAL_VALUE_TYPE &rh_ub) const;
const REAL_VALUE_TYPE &rh_ub,
relation_kind) const;
// Unary operations have the range of the LHS as op2.
virtual bool fold_range (irange &r, tree type,
const frange &lh,