dominance.c (struct dom_info): Add fake_exit_edge.

* dominance.c (struct dom_info): Add fake_exit_edge.
        (init_dom_info): Allocate it.
        (free_dom_info): Free it.
        (calc_dfs_tree): Set it.  Handle noreturn and infinite loops
        in two passes.
        (calc_idoms): Honor fake_exit_edge.

From-SVN: r84697
This commit is contained in:
Richard Henderson 2004-07-14 11:27:19 -07:00 committed by Richard Henderson
parent 0c322af34a
commit 26e0e4107b
2 changed files with 70 additions and 13 deletions

View File

@ -1,3 +1,12 @@
2004-07-14 Richard Henderson <rth@redhat.com>
* dominance.c (struct dom_info): Add fake_exit_edge.
(init_dom_info): Allocate it.
(free_dom_info): Free it.
(calc_dfs_tree): Set it. Handle noreturn and infinite loops
in two passes.
(calc_idoms): Honor fake_exit_edge.
2004-07-13 Jason Merrill <jason@redhat.com>
* tree-gimple.c (is_gimple_reg_rhs, is_gimple_mem_rhs): New fns.

View File

@ -101,13 +101,17 @@ struct dom_info
is true for every basic block bb, but not the opposite. */
basic_block *dfs_to_bb;
/* This is the next free DFS number when creating the DFS tree or forest. */
/* This is the next free DFS number when creating the DFS tree. */
unsigned int dfsnum;
/* The number of nodes in the DFS tree (==dfsnum-1). */
unsigned int nodes;
/* Blocks with bits set here have a fake edge to EXIT. These are used
to turn a DFS forest into a proper tree. */
bitmap fake_exit_edge;
};
static void init_dom_info (struct dom_info *);
static void init_dom_info (struct dom_info *, enum cdi_direction);
static void free_dom_info (struct dom_info *);
static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
enum cdi_direction);
@ -142,7 +146,7 @@ static unsigned n_bbs_in_dom_tree[2];
This initializes the contents of DI, which already must be allocated. */
static void
init_dom_info (struct dom_info *di)
init_dom_info (struct dom_info *di, enum cdi_direction dir)
{
/* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
EXIT_BLOCK. */
@ -164,6 +168,8 @@ init_dom_info (struct dom_info *di)
di->dfsnum = 1;
di->nodes = 0;
di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
}
#undef init_ar
@ -184,6 +190,7 @@ free_dom_info (struct dom_info *di)
free (di->set_child);
free (di->dfs_order);
free (di->dfs_to_bb);
BITMAP_XFREE (di->fake_exit_edge);
}
/* The nonrecursive variant of creating a DFS tree. DI is our working
@ -193,9 +200,9 @@ free_dom_info (struct dom_info *di)
assigned their dfs number and are linked together to form a tree. */
static void
calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, enum cdi_direction reverse)
calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
enum cdi_direction reverse)
{
/* We never call this with bb==EXIT_BLOCK_PTR (ENTRY_BLOCK_PTR if REVERSE). */
/* We call this _only_ if bb is not already visited. */
edge e;
TBB child_i, my_i = 0;
@ -322,18 +329,47 @@ calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
{
/* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
They are reverse-unreachable. In the dom-case we disallow such
nodes, but in post-dom we have to deal with them, so we simply
include them in the DFS tree which actually becomes a forest. */
nodes, but in post-dom we have to deal with them.
There are two situations in which this occurs. First, noreturn
functions. Second, infinite loops. In the first case we need to
pretend that there is an edge to the exit block. In the second
case, we wind up with a forest. We need to process all noreturn
blocks before we know if we've got any infinite loops. */
basic_block b;
bool saw_unconnected = false;
FOR_EACH_BB_REVERSE (b)
{
if (di->dfs_order[b->index])
continue;
if (b->succ)
{
if (di->dfs_order[b->index] == 0)
saw_unconnected = true;
continue;
}
bitmap_set_bit (di->fake_exit_edge, b->index);
di->dfs_order[b->index] = di->dfsnum;
di->dfs_to_bb[di->dfsnum] = b;
di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
di->dfsnum++;
calc_dfs_tree_nonrec (di, b, reverse);
}
if (saw_unconnected)
{
FOR_EACH_BB_REVERSE (b)
{
if (di->dfs_order[b->index])
continue;
bitmap_set_bit (di->fake_exit_edge, b->index);
di->dfs_order[b->index] = di->dfsnum;
di->dfs_to_bb[di->dfsnum] = b;
di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
di->dfsnum++;
calc_dfs_tree_nonrec (di, b, reverse);
}
}
}
di->nodes = di->dfsnum - 1;
@ -459,7 +495,16 @@ calc_idoms (struct dom_info *di, enum cdi_direction reverse)
par = di->dfs_parent[v];
k = v;
if (reverse)
e = bb->succ;
{
e = bb->succ;
/* If this block has a fake edge to exit, process that first. */
if (bitmap_bit_p (di->fake_exit_edge, bb->index))
{
e_next = e;
goto do_fake_exit_edge;
}
}
else
e = bb->pred;
@ -467,7 +512,7 @@ calc_idoms (struct dom_info *di, enum cdi_direction reverse)
to them. That way we have the smallest node with also a path to
us only over nodes behind us. In effect we search for our
semidominator. */
for (; e; e = e_next)
for (; e ; e = e_next)
{
TBB k1;
basic_block b;
@ -483,7 +528,10 @@ calc_idoms (struct dom_info *di, enum cdi_direction reverse)
e_next = e->pred_next;
}
if (b == en_block)
k1 = di->dfs_order[last_basic_block];
{
do_fake_exit_edge:
k1 = di->dfs_order[last_basic_block];
}
else
k1 = di->dfs_order[b->index];
@ -590,7 +638,7 @@ calculate_dominance_info (enum cdi_direction dir)
}
n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
init_dom_info (&di);
init_dom_info (&di, dir);
calc_dfs_tree (&di, dir);
calc_idoms (&di, dir);