decl.c (xref_tag): Revise handling of nested template declarations.

* decl.c (xref_tag): Revise handling of nested template
	declarations.
	* pt.c (check_explicit_specialization): Tweak handling of friend
	templates in template classes.
	(tsubst_friend_class): Handle friend declarations for nested
	member template classes.

From-SVN: r26520
This commit is contained in:
Mark Mitchell 1999-04-17 14:15:29 +00:00 committed by Mark Mitchell
parent 4e6a144034
commit 25aab5d0ad
4 changed files with 152 additions and 67 deletions

View File

@ -1,3 +1,12 @@
1999-04-17 Mark Mitchell <mark@codesourcery.com>
* decl.c (xref_tag): Revise handling of nested template
declarations.
* pt.c (check_explicit_specialization): Tweak handling of friend
templates in template classes.
(tsubst_friend_class): Handle friend declarations for nested
member template classes.
1999-04-16 Mark Mitchell <mark@codesourcery.com>
* class.c (finish_struct): Remove unused variable.

View File

@ -12323,6 +12323,7 @@ xref_tag (code_type_node, name, globalize)
struct binding_level *b = current_binding_level;
int got_type = 0;
tree attributes = NULL_TREE;
tree context = NULL_TREE;
/* If we are called from the parser, code_type_node will sometimes be a
TREE_LIST. This indicates that the user wrote
@ -12375,72 +12376,87 @@ xref_tag (code_type_node, name, globalize)
}
else
{
if (current_class_type
&& template_class_depth (current_class_type)
&& PROCESSING_REAL_TEMPLATE_DECL_P ())
/* Since GLOBALIZE is non-zero, we are not looking at a
definition of this tag. Since, in addition, we are currently
processing a (member) template declaration of a template
class, we don't want to do any lookup at all; consider:
template <class X>
struct S1
template <class U>
struct S2
{ template <class V>
friend struct S1; };
Here, the S2::S1 declaration should not be confused with the
outer declaration. In particular, the inner version should
have a template parameter of level 2, not level 1. This
would be particularly important if the member declaration
were instead:
template <class V = U> friend struct S1;
say, when we should tsubst into `U' when instantiating S2. */
ref = NULL_TREE;
else
if (t)
{
if (t)
{
/* [dcl.type.elab] If the identifier resolves to a
typedef-name or a template type-parameter, the
elaborated-type-specifier is ill-formed. */
if (t != TYPE_MAIN_VARIANT (t)
|| (CLASS_TYPE_P (t) && TYPE_WAS_ANONYMOUS (t)))
cp_pedwarn ("using typedef-name `%D' after `%s'",
TYPE_NAME (t), tag_name (tag_code));
else if (TREE_CODE (t) == TEMPLATE_TYPE_PARM)
cp_error ("using template type parameter `%T' after `%s'",
t, tag_name (tag_code));
/* [dcl.type.elab] If the identifier resolves to a
typedef-name or a template type-parameter, the
elaborated-type-specifier is ill-formed. */
if (t != TYPE_MAIN_VARIANT (t)
|| (CLASS_TYPE_P (t) && TYPE_WAS_ANONYMOUS (t)))
cp_pedwarn ("using typedef-name `%D' after `%s'",
TYPE_NAME (t), tag_name (tag_code));
else if (TREE_CODE (t) == TEMPLATE_TYPE_PARM)
cp_error ("using template type parameter `%T' after `%s'",
t, tag_name (tag_code));
ref = t;
}
else
ref = lookup_tag (code, name, b, 0);
ref = t;
}
else
ref = lookup_tag (code, name, b, 0);
if (! ref)
{
/* Try finding it as a type declaration. If that wins,
use it. */
ref = lookup_name (name, 1);
if (! ref)
{
/* Try finding it as a type declaration. If that wins,
use it. */
ref = lookup_name (name, 1);
if (ref != NULL_TREE
&& processing_template_decl
&& DECL_CLASS_TEMPLATE_P (ref)
&& template_class_depth (current_class_type) == 0)
/* Since GLOBALIZE is true, we're declaring a global
if (ref != NULL_TREE
&& processing_template_decl
&& DECL_CLASS_TEMPLATE_P (ref)
&& template_class_depth (current_class_type) == 0)
/* Since GLOBALIZE is true, we're declaring a global
template, so we want this type. */
ref = DECL_RESULT (ref);
ref = DECL_RESULT (ref);
if (ref && TREE_CODE (ref) == TYPE_DECL
&& TREE_CODE (TREE_TYPE (ref)) == code)
ref = TREE_TYPE (ref);
else
ref = NULL_TREE;
}
if (ref && TREE_CODE (ref) == TYPE_DECL
&& TREE_CODE (TREE_TYPE (ref)) == code)
ref = TREE_TYPE (ref);
else
ref = NULL_TREE;
}
if (ref && current_class_type
&& template_class_depth (current_class_type)
&& PROCESSING_REAL_TEMPLATE_DECL_P ())
{
/* Since GLOBALIZE is non-zero, we are not looking at a
definition of this tag. Since, in addition, we are currently
processing a (member) template declaration of a template
class, we must be very careful; consider:
template <class X>
struct S1
template <class U>
struct S2
{ template <class V>
friend struct S1; };
Here, the S2::S1 declaration should not be confused with the
outer declaration. In particular, the inner version should
have a template parameter of level 2, not level 1. This
would be particularly important if the member declaration
were instead:
template <class V = U> friend struct S1;
say, when we should tsubst into `U' when instantiating
S2. On the other hand, when presented with:
template <class T>
struct S1 {
template <class U>
struct S2 {};
template <class U>
friend struct S2;
};
we must find the inner binding eventually. We
accomplish this by making sure that the new type we
create to represent this declaration has the right
TYPE_CONTEXT. */
context = TYPE_CONTEXT (ref);
ref = NULL_TREE;
}
}
@ -12487,6 +12503,7 @@ xref_tag (code_type_node, name, globalize)
struct binding_level *old_b = class_binding_level;
ref = make_lang_type (code);
TYPE_CONTEXT (ref) = context;
if (tag_code == signature_type)
{

View File

@ -1281,7 +1281,6 @@ check_explicit_specialization (declarator, decl, template_count, flags)
if (specialization || member_specialization || explicit_instantiation)
{
tree gen_tmpl;
tree tmpl = NULL_TREE;
tree targs = NULL_TREE;
@ -1435,13 +1434,34 @@ check_explicit_specialization (declarator, decl, template_count, flags)
return error_mark_node;
else
{
gen_tmpl = most_general_template (tmpl);
tree gen_tmpl = most_general_template (tmpl);
if (explicit_instantiation)
{
/* We don't set DECL_EXPLICIT_INSTANTIATION here; that
is done by do_decl_instantiation later. */
decl = instantiate_template (tmpl, innermost_args (targs));
is done by do_decl_instantiation later. */
int arg_depth = TMPL_ARGS_DEPTH (targs);
int parm_depth = TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl));
if (arg_depth > parm_depth)
{
/* If TMPL is not the most general template (for
example, if TMPL is a friend template that is
injected into namespace scope), then there will
be too many levels fo TARGS. Remove some of them
here. */
int i;
tree new_targs;
new_targs = make_temp_vec (parm_depth);
for (i = arg_depth - parm_depth; i < arg_depth; ++i)
TREE_VEC_ELT (new_targs, i - (arg_depth - parm_depth))
= TREE_VEC_ELT (targs, i);
targs = new_targs;
}
decl = instantiate_template (tmpl, targs);
return decl;
}
@ -4583,11 +4603,29 @@ tsubst_friend_class (friend_tmpl, args)
tree args;
{
tree friend_type;
tree tmpl = lookup_name (DECL_NAME (friend_tmpl), 1);
tree tmpl;
tmpl = maybe_get_template_decl_from_type_decl (tmpl);
/* First, we look for a class template. */
tmpl = lookup_name (DECL_NAME (friend_tmpl), /*prefer_type=*/0);
/* But, if we don't find one, it might be because we're in a
situation like this:
if (tmpl != NULL_TREE && DECL_CLASS_TEMPLATE_P (tmpl))
template <class T>
struct S {
template <class U>
friend struct S;
};
Here, in the scope of (say) S<int>, `S' is bound to a TYPE_DECL
for `S<int>', not the TEMPLATE_DECL. */
if (!DECL_CLASS_TEMPLATE_P (tmpl))
{
tmpl = lookup_name (DECL_NAME (friend_tmpl), /*prefer_type=*/1);
tmpl = maybe_get_template_decl_from_type_decl (tmpl);
}
if (tmpl && DECL_CLASS_TEMPLATE_P (tmpl))
{
/* The friend template has already been declared. Just
check to see that the declarations match, and install any new

View File

@ -0,0 +1,21 @@
// Build don't link:
// Origin: Mark Mitchell <mark@codesourcery.com>
template <class T>
class S {
public:
template <class U>
class C {
public:
void f() { S::i = 3; }
};
template <class U>
friend class C;
private:
static int i;
};
template void S<int>::C<double>::f();