revamp ada.numerics.aux

Instead of mapping elementary functions for all types to a single
type, use the intrinsics available for the various base types.

A new Ada.Numerics.Aux_Generic_Float is introduced to explicitly
dispatch, based on the 'Digits attribute of the base type, to the
various newly-added Aux_Short_Float, Aux_Float, Aux_Long_Float, or
Aux_Long_Long_Float.

The Aux_Short_Float unit is implemented in terms of the Aux_Float one,
and the others rely on the elementary functions from the C Math
library for float, double and long double types, respectively.

An Aux_Linker_Options is added, and units that import intrinsics from
libm/libc depend on it to provide the "-lm" linker option if needed.
The option is provided by default, but there is an alternate version
that doesn't, that is used for vxworks targets.

The Aux variant that used to open-code Sin and Cos for the ancient
ppc-darwin, because of insufficient precision in libc, is dropped,
along with the alternate dummy body for Aux.  Both are presumed no
longer needed.

The original Ada.Numerics.Aux is retained, for backward compatibility,
as a wrapper for a newly-added Aux_Compat, that renames
Aux_Long_Float, except on x86, in which an alternate version renames
Aux_Long_Long_Float.

Generic_Elementary_Functions and Generic_Complex_Types are adjusted to
use Aux_Generic_Float, avoiding the type conversions and inefficiencies of
computing results in higher precision than requested.

Generic_Complex_Elementary_Functions is adjusted to enable an
additional instance of the sincos optimization, even without -gnatn.


for  gcc/ada/ChangeLog

	* Makefile.rtl (GNATRTL_NONTASKING_OBJS): Compile Ada.Numerics
	child units Aux_Generic_Float, Aux_Long_Long_Float, Aux_Long_Float,
	Aux_Float, Aux_Short_Float, Aux_Compat, and Aux_Linker_Options.
	(X86_TARGET_PAIRS): Drop dummy body for Aux.  Use x86 version
	of Aux_Compat.
	(X86_64_TARGET_PAIRS): Likewise.
	(LIBGNAT_TARGET_PAIRS): On VxWorks, select the nolibm
	variants.  Drop the darwin version of Aux.  Drop the redundant
	libc-x86 numaux variants on x86* kfreebsd variants.
	* libgnat/a-nagefl.ads: New Aux_Generic_Float.
	* libgnat/a-naliop.ads: New Aux_Linker_Options.
	* libgnat/a-naliop__nolibm.ads: New.
	* libgnat/a-nallfl.ads: New Aux_Long_Long_Float.
	* libgnat/a-nalofl.ads: New Aux_Long_Float.
	* libgnat/a-nuaufl.ads: New Aux_Float.
	* libgnat/a-nashfl.ads: New Aux_Short_Float.
	* libgnat/a-ngcefu.adb (Exp): Factor out the Im (X) passed to
	Sin and Cos in the Complex variant too.
	* libgnat/a-ngcoty.adb: Switch to Aux_Generic_Float.  Drop
	redundant conversions.
	* libgnat/a-ngelfu.adb: Likewise.
	* libgnat/a-nuauco.ads: New Aux_Compat.
	* libgnat/a-nuauco__x86.ads: New.
	* libgnat/a-numaux.ads: Replace with Compat wrapper.
	* libgnat/a-numaux__darwin.adb: Remove.
	* libgnat/a-numaux__darwin.ads: Remove.
	* libgnat/a-numaux__dummy.adb: Remove.
	* libgnat/a-numaux__libc-x86.ads: Remove.
	* libgnat/a-numaux__vxworks.ads: Remove.
This commit is contained in:
Alexandre Oliva 2020-10-18 17:19:53 -03:00 committed by Alexandre Oliva
parent 476036b35c
commit 1e70b1a358
15 changed files with 598 additions and 477 deletions

View File

@ -234,6 +234,13 @@ GNATRTL_NONTASKING_OBJS= \
a-nudira$(objext) \
a-nuelfu$(objext) \
a-nuflra$(objext) \
a-nagefl$(objext) \
a-nallfl$(objext) \
a-nalofl$(objext) \
a-nuaufl$(objext) \
a-nashfl$(objext) \
a-nuauco$(objext) \
a-naliop$(objext) \
a-numaux$(objext) \
a-numeri$(objext) \
a-nurear$(objext) \
@ -834,13 +841,11 @@ ATOMICS_BUILTINS_TARGET_PAIRS = \
# Special version of units for x86 and x86-64 platforms.
X86_TARGET_PAIRS = \
a-numaux.ads<libgnat/a-numaux__libc-x86.ads \
a-numaux.adb<libgnat/a-numaux__dummy.adb \
a-nuauco.ads<libgnat/a-nuauco__x86.ads \
s-atocou.adb<libgnat/s-atocou__x86.adb
X86_64_TARGET_PAIRS = \
a-numaux.ads<libgnat/a-numaux__libc-x86.ads \
a-numaux.adb<libgnat/a-numaux__dummy.adb \
a-nuauco.ads<libgnat/a-nuauco__x86.ads \
s-atocou.adb<libgnat/s-atocou__builtin.adb
# Implementation of symbolic traceback based on dwarf
@ -916,7 +921,7 @@ ifeq ($(strip $(filter-out powerpc% wrs vxworks vxworksspe vxworks7% vxworks7spe
LIBGNAT_TARGET_PAIRS = \
a-intnam.ads<libgnarl/a-intnam__vxworks.ads \
a-numaux.ads<libgnat/a-numaux__vxworks.ads \
a-naliop.ads<libgnat/a-naliop__nolibm.ads \
s-inmaop.adb<libgnarl/s-inmaop__vxworks.adb \
s-intman.ads<libgnarl/s-intman__vxworks.ads \
s-intman.adb<libgnarl/s-intman__vxworks.adb \
@ -1039,7 +1044,7 @@ ifeq ($(strip $(filter-out powerpc% wrs vxworksae vxworksaespe,$(target_cpu) $(t
LIBGNAT_TARGET_PAIRS = \
a-elchha.adb<libgnat/a-elchha__vxworks-ppc-full.adb \
a-intnam.ads<libgnarl/a-intnam__vxworks.ads \
a-numaux.ads<libgnat/a-numaux__vxworks.ads \
a-naliop.ads<libgnat/a-naliop__nolibm.ads \
g-io.adb<hie/g-io__vxworks-cert.adb \
s-inmaop.adb<libgnarl/s-inmaop__vxworks.adb \
s-interr.adb<libgnarl/s-interr__vxworks.adb \
@ -1095,7 +1100,7 @@ ifeq ($(strip $(filter-out %86 wrs vxworksae,$(target_cpu) $(target_vendor) $(ta
LIBGNAT_TARGET_PAIRS = \
a-elchha.adb<libgnat/a-elchha__vxworks-ppc-full.adb \
a-intnam.ads<libgnarl/a-intnam__vxworks.ads \
a-numaux.ads<libgnat/a-numaux__vxworks.ads \
a-naliop.ads<libgnat/a-naliop__nolibm.ads \
g-io.adb<hie/g-io__vxworks-cert.adb \
s-inmaop.adb<libgnarl/s-inmaop__vxworks.adb \
s-interr.adb<libgnarl/s-interr__vxworks.adb \
@ -1314,7 +1319,7 @@ ifeq ($(strip $(filter-out aarch64 arm% coff wrs vx%,$(target_cpu) $(target_vend
LIBGNAT_TARGET_PAIRS = \
a-intnam.ads<libgnarl/a-intnam__vxworks.ads \
a-numaux.ads<libgnat/a-numaux__vxworks.ads \
a-naliop.ads<libgnat/a-naliop__nolibm.ads \
s-inmaop.adb<libgnarl/s-inmaop__vxworks.adb \
s-interr.adb<libgnarl/s-interr__vxworks.adb \
s-intman.ads<libgnarl/s-intman__vxworks.ads \
@ -1648,8 +1653,6 @@ endif
ifeq ($(strip $(filter-out x86_64 kfreebsd%,$(target_cpu) $(target_os))),)
LIBGNAT_TARGET_PAIRS = \
a-intnam.ads<libgnarl/a-intnam__freebsd.ads \
a-numaux.ads<libgnat/a-numaux__libc-x86.ads \
a-numaux.adb<libgnat/a-numaux__dummy.adb \
s-inmaop.adb<libgnarl/s-inmaop__posix.adb \
s-intman.adb<libgnarl/s-intman__posix.adb \
s-osinte.adb<libgnarl/s-osinte__posix.adb \
@ -2302,7 +2305,7 @@ ifeq ($(strip $(filter-out %ia64 linux%,$(target_cpu) $(target_os))),)
a-exetim.adb<libgnarl/a-exetim__posix.adb \
a-exetim.ads<libgnarl/a-exetim__default.ads \
a-intnam.ads<libgnarl/a-intnam__linux.ads \
a-numaux.ads<libgnat/a-numaux__libc-x86.ads \
a-nuauco.ads<libgnat/a-nuauco__x86.ads \
a-synbar.adb<libgnarl/a-synbar__posix.adb \
a-synbar.ads<libgnarl/a-synbar__posix.ads \
s-inmaop.adb<libgnarl/s-inmaop__posix.adb \
@ -2550,8 +2553,6 @@ ifeq ($(strip $(filter-out darwin%,$(target_os))),)
LIBGNAT_TARGET_PAIRS += \
s-intman.adb<libgnarl/s-intman__posix.adb \
s-osprim.adb<libgnat/s-osprim__posix.adb \
a-numaux.ads<libgnat/a-numaux__darwin.ads \
a-numaux.adb<libgnat/a-numaux__darwin.adb \
$(ATOMICS_TARGET_PAIRS) \
$(ATOMICS_BUILTINS_TARGET_PAIRS) \
system.ads<libgnat/system-darwin-ppc.ads

View File

@ -0,0 +1,171 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X _ G E N E R I C _ F L O A T --
-- --
-- S p e c --
-- (Generic Wrapper) --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package provides the basic computational interface for the generic
-- elementary functions. The C library version interfaces with the routines
-- in the C mathematical library.
-- This version here is for use with normal Unix math functions.
with Ada.Numerics.Aux_Long_Long_Float;
with Ada.Numerics.Aux_Long_Float;
with Ada.Numerics.Aux_Float;
with Ada.Numerics.Aux_Short_Float;
generic
type T is digits <>;
package Ada.Numerics.Aux_Generic_Float is
pragma Pure;
package LLF renames Aux_Long_Long_Float;
package LF renames Aux_Long_Float;
package F renames Aux_Float;
package SF renames Aux_Short_Float;
function Sin (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Sin (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Sin (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Sin (F.T (X)))
else T'Base (SF.Sin (SF.T (X))));
function Cos (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Cos (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Cos (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Cos (F.T (X)))
else T'Base (SF.Cos (SF.T (X))));
function Tan (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Tan (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Tan (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Tan (F.T (X)))
else T'Base (SF.Tan (SF.T (X))));
function Exp (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Exp (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Exp (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Exp (F.T (X)))
else T'Base (SF.Exp (SF.T (X))));
function Sqrt (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Sqrt (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Sqrt (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Sqrt (F.T (X)))
else T'Base (SF.Sqrt (SF.T (X))));
function Log (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Log (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Log (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Log (F.T (X)))
else T'Base (SF.Log (SF.T (X))));
function Acos (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Acos (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Acos (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Acos (F.T (X)))
else T'Base (SF.Acos (SF.T (X))));
function Asin (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Asin (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Asin (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Asin (F.T (X)))
else T'Base (SF.Asin (SF.T (X))));
function Atan (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Atan (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Atan (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Atan (F.T (X)))
else T'Base (SF.Atan (SF.T (X))));
function Sinh (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Sinh (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Sinh (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Sinh (F.T (X)))
else T'Base (SF.Sinh (SF.T (X))));
function Cosh (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Cosh (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Cosh (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Cosh (F.T (X)))
else T'Base (SF.Cosh (SF.T (X))));
function Tanh (X : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Tanh (LLF.T (X)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Tanh (LF.T (X)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Tanh (F.T (X)))
else T'Base (SF.Tanh (SF.T (X))));
function Pow (X, Y : T'Base) return T'Base
is (if T'Base'Digits > LF.T'Digits
then T'Base (LLF.Pow (LLF.T (X), LLF.T (Y)))
elsif T'Base'Digits > F.T'Digits
then T'Base (LF.Pow (LF.T (X), LF.T (Y)))
elsif T'Base'Digits > SF.T'Digits
then T'Base (F.Pow (F.T (X), F.T (Y)))
else T'Base (SF.Pow (SF.T (X), SF.T (Y))));
end Ada.Numerics.Aux_Generic_Float;

View File

@ -0,0 +1,45 @@
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X _ L I N K E R _ O P T I O N S --
-- --
-- S p e c --
-- --
-- Copyright (C) 2001-2020, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package is used to provide target specific linker_options for
-- the support of C Library Math functions as required by other
-- children packages of Ada.Numerics.Aux.
-- This is a version for default use that links with -lm. An
-- alternate __nolibm version is to be used where no additional
-- libraries are required.
-- This package should not be directly with'ed by an application program
package Ada.Numerics.Aux_Linker_Options is
pragma Pure;
pragma Linker_Options ("-lm");
end Ada.Numerics.Aux_Linker_Options;

View File

@ -0,0 +1,43 @@
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X _ L I N K E R _ O P T I O N S --
-- --
-- S p e c --
-- --
-- Copyright (C) 2001-2020, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package is used to provide target specific linker_options for
-- the support of C Library Math functions as required by other
-- children packages of Ada.Numerics.Aux.
-- This is a version to be used where no additional libraries are
-- required.
-- This package should not be directly with'ed by an application program
package Ada.Numerics.Aux_Linker_Options is
pragma Pure;
end Ada.Numerics.Aux_Linker_Options;

View File

@ -2,10 +2,10 @@
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- A D A . N U M E R I C S . A U X . L O N G _ L O N G _ F L O A T --
-- --
-- S p e c --
-- (C Library Version, VxWorks) --
-- (C Math Library Version, Long Long Float) --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
@ -30,68 +30,58 @@
-- --
------------------------------------------------------------------------------
-- Version for use on VxWorks (where we have no libm.a library), so the pragma
-- Linker_Options ("-lm") is omitted in this version.
-- This package provides the basic computational interface for the generic
-- elementary functions. The C library version interfaces with the routines
-- in the C mathematical library, and is thus quite portable.
package Ada.Numerics.Aux is
with Ada.Numerics.Aux_Linker_Options;
pragma Warnings (Off, Ada.Numerics.Aux_Linker_Options);
package Ada.Numerics.Aux_Long_Long_Float is
pragma Pure;
type Double is new Long_Float;
-- Type Double is the type used to call the C routines
subtype T is Long_Long_Float;
-- We import these functions directly from C. Note that we label them
-- all as pure functions, because indeed all of them are in fact pure.
function Sin (X : Double) return Double;
pragma Import (Intrinsic, Sin, "sin");
pragma Pure_Function (Sin);
function Sin (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sinl";
function Cos (X : Double) return Double;
pragma Import (Intrinsic, Cos, "cos");
pragma Pure_Function (Cos);
function Cos (X : T) return T with
Import, Convention => Intrinsic, External_Name => "cosl";
function Tan (X : Double) return Double;
pragma Import (Intrinsic, Tan, "tan");
pragma Pure_Function (Tan);
function Tan (X : T) return T with
Import, Convention => Intrinsic, External_Name => "tanl";
function Exp (X : Double) return Double;
pragma Import (Intrinsic, Exp, "exp");
pragma Pure_Function (Exp);
function Exp (X : T) return T with
Import, Convention => Intrinsic, External_Name => "expl";
function Sqrt (X : Double) return Double;
pragma Import (Intrinsic, Sqrt, "sqrt");
pragma Pure_Function (Sqrt);
function Sqrt (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sqrtl";
function Log (X : Double) return Double;
pragma Import (Intrinsic, Log, "log");
pragma Pure_Function (Log);
function Log (X : T) return T with
Import, Convention => Intrinsic, External_Name => "logl";
function Acos (X : Double) return Double;
pragma Import (Intrinsic, Acos, "acos");
pragma Pure_Function (Acos);
function Acos (X : T) return T with
Import, Convention => Intrinsic, External_Name => "acosl";
function Asin (X : Double) return Double;
pragma Import (Intrinsic, Asin, "asin");
pragma Pure_Function (Asin);
function Asin (X : T) return T with
Import, Convention => Intrinsic, External_Name => "asinl";
function Atan (X : Double) return Double;
pragma Import (Intrinsic, Atan, "atan");
pragma Pure_Function (Atan);
function Atan (X : T) return T with
Import, Convention => Intrinsic, External_Name => "atanl";
function Sinh (X : Double) return Double;
pragma Import (Intrinsic, Sinh, "sinh");
pragma Pure_Function (Sinh);
function Sinh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sinhl";
function Cosh (X : Double) return Double;
pragma Import (Intrinsic, Cosh, "cosh");
pragma Pure_Function (Cosh);
function Cosh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "coshl";
function Tanh (X : Double) return Double;
pragma Import (Intrinsic, Tanh, "tanh");
pragma Pure_Function (Tanh);
function Tanh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "tanhl";
function Pow (X, Y : Double) return Double;
pragma Import (Intrinsic, Pow, "pow");
pragma Pure_Function (Pow);
function Pow (X, Y : T) return T with
Import, Convention => Intrinsic, External_Name => "powl";
end Ada.Numerics.Aux;
end Ada.Numerics.Aux_Long_Long_Float;

View File

@ -2,10 +2,10 @@
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- A D A . N U M E R I C S . A U X _ L O N G _ F L O A T --
-- --
-- S p e c --
-- (Apple OS X Version) --
-- (C Math Library Version, Long Float) --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
@ -30,74 +30,58 @@
-- --
------------------------------------------------------------------------------
-- This version is for use on OS X. It uses the normal Unix math functions,
-- except for sine/cosine which have been implemented directly in Ada to get
-- the required accuracy.
-- This package provides the basic computational interface for the generic
-- elementary functions. The C library version interfaces with the routines
-- in the C mathematical library, and is thus quite portable.
package Ada.Numerics.Aux is
with Ada.Numerics.Aux_Linker_Options;
pragma Warnings (Off, Ada.Numerics.Aux_Linker_Options);
package Ada.Numerics.Aux_Long_Float is
pragma Pure;
pragma Linker_Options ("-lm");
type Double is new Long_Float;
-- Type Double is the type used to call the C routines
-- The following functions have been implemented in Ada, since
-- the OS X math library didn't meet accuracy requirements for
-- argument reduction. The implementation here has been tailored
-- to match Ada strict mode Numerics requirements while maintaining
-- maximum efficiency.
function Sin (X : Double) return Double;
pragma Inline (Sin);
function Cos (X : Double) return Double;
pragma Inline (Cos);
subtype T is Long_Float;
-- We import these functions directly from C. Note that we label them
-- all as pure functions, because indeed all of them are in fact pure.
function Tan (X : Double) return Double;
pragma Import (Intrinsic, Tan, "tan");
pragma Pure_Function (Tan);
function Sin (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sin";
function Exp (X : Double) return Double;
pragma Import (Intrinsic, Exp, "exp");
pragma Pure_Function (Exp);
function Cos (X : T) return T with
Import, Convention => Intrinsic, External_Name => "cos";
function Sqrt (X : Double) return Double;
pragma Import (Intrinsic, Sqrt, "sqrt");
pragma Pure_Function (Sqrt);
function Tan (X : T) return T with
Import, Convention => Intrinsic, External_Name => "tan";
function Log (X : Double) return Double;
pragma Import (Intrinsic, Log, "log");
pragma Pure_Function (Log);
function Exp (X : T) return T with
Import, Convention => Intrinsic, External_Name => "exp";
function Acos (X : Double) return Double;
pragma Import (Intrinsic, Acos, "acos");
pragma Pure_Function (Acos);
function Sqrt (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sqrt";
function Asin (X : Double) return Double;
pragma Import (Intrinsic, Asin, "asin");
pragma Pure_Function (Asin);
function Log (X : T) return T with
Import, Convention => Intrinsic, External_Name => "log";
function Atan (X : Double) return Double;
pragma Import (Intrinsic, Atan, "atan");
pragma Pure_Function (Atan);
function Acos (X : T) return T with
Import, Convention => Intrinsic, External_Name => "acos";
function Sinh (X : Double) return Double;
pragma Import (Intrinsic, Sinh, "sinh");
pragma Pure_Function (Sinh);
function Asin (X : T) return T with
Import, Convention => Intrinsic, External_Name => "asin";
function Cosh (X : Double) return Double;
pragma Import (Intrinsic, Cosh, "cosh");
pragma Pure_Function (Cosh);
function Atan (X : T) return T with
Import, Convention => Intrinsic, External_Name => "atan";
function Tanh (X : Double) return Double;
pragma Import (Intrinsic, Tanh, "tanh");
pragma Pure_Function (Tanh);
function Sinh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sinh";
function Pow (X, Y : Double) return Double;
pragma Import (Intrinsic, Pow, "pow");
pragma Pure_Function (Pow);
function Cosh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "cosh";
end Ada.Numerics.Aux;
function Tanh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "tanh";
function Pow (X, Y : T) return T with
Import, Convention => Intrinsic, External_Name => "pow";
end Ada.Numerics.Aux_Long_Float;

View File

@ -0,0 +1,87 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X _ S H O R T _ F L O A T --
-- --
-- S p e c --
-- (Short Float Wrapper in terms of Float) --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package provides the basic computational interface for the
-- generic elementary functions. The functions in this unit are
-- wrappers for those in the Float package.
with Ada.Numerics.Aux_Float;
package Ada.Numerics.Aux_Short_Float is
pragma Pure;
subtype T is Short_Float;
package Aux renames Ada.Numerics.Aux_Float;
subtype W is Aux.T;
-- Use the Aux implementation.
function Sin (X : T) return T
is (T (Aux.Sin (W (X))));
function Cos (X : T) return T
is (T (Aux.Cos (W (X))));
function Tan (X : T) return T
is (T (Aux.Tan (W (X))));
function Exp (X : T) return T
is (T (Aux.Exp (W (X))));
function Sqrt (X : T) return T
is (T (Aux.Sqrt (W (X))));
function Log (X : T) return T
is (T (Aux.Log (W (X))));
function Acos (X : T) return T
is (T (Aux.Acos (W (X))));
function Asin (X : T) return T
is (T (Aux.Asin (W (X))));
function Atan (X : T) return T
is (T (Aux.Atan (W (X))));
function Sinh (X : T) return T
is (T (Aux.Sinh (W (X))));
function Cosh (X : T) return T
is (T (Aux.Cosh (W (X))));
function Tanh (X : T) return T
is (T (Aux.Tanh (W (X))));
function Pow (X, Y : T) return T
is (T (Aux.Pow (W (X), W (Y))));
end Ada.Numerics.Aux_Short_Float;

View File

@ -481,11 +481,12 @@ package body Ada.Numerics.Generic_Complex_Elementary_Functions is
---------
function Exp (X : Complex) return Complex is
ImX : constant Real'Base := Im (X);
EXP_RE_X : constant Real'Base := Exp (Re (X));
begin
return Compose_From_Cartesian (EXP_RE_X * Cos (Im (X)),
EXP_RE_X * Sin (Im (X)));
return Compose_From_Cartesian (EXP_RE_X * Cos (ImX),
EXP_RE_X * Sin (ImX));
end Exp;
function Exp (X : Imaginary) return Complex is

View File

@ -29,10 +29,12 @@
-- --
------------------------------------------------------------------------------
with Ada.Numerics.Aux; use Ada.Numerics.Aux;
with Ada.Numerics.Aux_Generic_Float;
package body Ada.Numerics.Generic_Complex_Types is
package Aux is new Ada.Numerics.Aux_Generic_Float (Real);
subtype R is Real'Base;
Two_Pi : constant R := R (2.0) * Pi;
@ -440,7 +442,7 @@ package body Ada.Numerics.Generic_Complex_Types is
end if;
else
arg := R (Atan (Double (abs (b / a))));
arg := Aux.Atan (abs (b / a));
if a > 0.0 then
if b > 0.0 then
@ -507,8 +509,8 @@ package body Ada.Numerics.Generic_Complex_Types is
if Modulus = 0.0 then
return (0.0, 0.0);
else
return (Modulus * R (Cos (Double (Argument))),
Modulus * R (Sin (Double (Argument))));
return (Modulus * Aux.Cos (Argument),
Modulus * Aux.Sin (Argument));
end if;
end Compose_From_Polar;
@ -536,8 +538,8 @@ package body Ada.Numerics.Generic_Complex_Types is
return (0.0, -Modulus);
else
Arg := Two_Pi * Argument / Cycle;
return (Modulus * R (Cos (Double (Arg))),
Modulus * R (Sin (Double (Arg))));
return (Modulus * Aux.Cos (Arg),
Modulus * Aux.Sin (Arg));
end if;
else
raise Argument_Error;
@ -597,8 +599,8 @@ package body Ada.Numerics.Generic_Complex_Types is
exception
when Constraint_Error =>
pragma Assert (X.Re /= 0.0);
return R (Double (abs (X.Re))
* Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
return R (abs (X.Re))
* Aux.Sqrt (1.0 + (R (X.Im) / R (X.Re)) ** 2);
end;
begin
@ -612,8 +614,8 @@ package body Ada.Numerics.Generic_Complex_Types is
exception
when Constraint_Error =>
pragma Assert (X.Im /= 0.0);
return R (Double (abs (X.Im))
* Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
return R (abs (X.Im))
* Aux.Sqrt (1.0 + (R (X.Re) / R (X.Im)) ** 2);
end;
-- Now deal with cases of underflow. If only one of the squares
@ -632,13 +634,11 @@ package body Ada.Numerics.Generic_Complex_Types is
else
if abs (X.Re) > abs (X.Im) then
return
R (Double (abs (X.Re))
* Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
return R (abs (X.Re))
* Aux.Sqrt (1.0 + (R (X.Im) / R (X.Re)) ** 2);
else
return
R (Double (abs (X.Im))
* Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
return R (abs (X.Im))
* Aux.Sqrt (1.0 + (R (X.Re) / R (X.Im)) ** 2);
end if;
end if;
@ -652,7 +652,7 @@ package body Ada.Numerics.Generic_Complex_Types is
-- In all other cases, the naive computation will do
else
return R (Sqrt (Double (Re2 + Im2)));
return Aux.Sqrt (Re2 + Im2);
end if;
end Modulus;

View File

@ -36,13 +36,13 @@
-- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
-- cosh, tanh from C library via math.h
with Ada.Numerics.Aux;
with Ada.Numerics.Aux_Generic_Float;
package body Ada.Numerics.Generic_Elementary_Functions with
SPARK_Mode => Off
is
use type Ada.Numerics.Aux.Double;
package Aux is new Ada.Numerics.Aux_Generic_Float (Float_Type);
Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
@ -50,7 +50,6 @@ is
Half_Log_Two : constant := Log_Two / 2;
subtype T is Float_Type'Base;
subtype Double is Aux.Double;
Two_Pi : constant T := 2.0 * Pi;
Half_Pi : constant T := Pi / 2.0;
@ -150,8 +149,7 @@ is
Rest := Rest - 0.25;
end if;
Result := Result *
Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
Result := Result * Aux.Pow (Left, Rest);
if Right >= 0.0 then
return Result;
@ -159,8 +157,7 @@ is
return (1.0 / Result);
end if;
else
return
Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
return Aux.Pow (Left, Right);
end if;
end if;
@ -194,7 +191,7 @@ is
return Pi;
end if;
Temp := Float_Type'Base (Aux.Acos (Double (X)));
Temp := Aux.Acos (X);
if Temp < 0.0 then
Temp := Pi + Temp;
@ -332,7 +329,7 @@ is
return -(Pi / 2.0);
end if;
return Float_Type'Base (Aux.Asin (Double (X)));
return Aux.Asin (X);
end Arcsin;
-- Arbitrary cycle
@ -515,7 +512,7 @@ is
return 1.0;
end if;
return Float_Type'Base (Aux.Cos (Double (X)));
return Aux.Cos (X);
end Cos;
-- Arbitrary cycle
@ -568,7 +565,7 @@ is
return 1.0 / X;
end if;
return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
return 1.0 / Aux.Tan (X);
end Cot;
-- Arbitrary cycle
@ -617,7 +614,7 @@ is
return 1.0 / X;
end if;
return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
return 1.0 / Aux.Tanh (X);
end Coth;
---------
@ -632,7 +629,7 @@ is
return 1.0;
end if;
Result := Float_Type'Base (Aux.Exp (Double (X)));
Result := Aux.Exp (X);
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
-- is False, then we can just leave it as an infinity (and indeed we
@ -716,7 +713,7 @@ is
Raw_Atan :=
(if Z < Sqrt_Epsilon then Z
elsif Z = 1.0 then Pi / 4.0
else Float_Type'Base (Aux.Atan (Double (Z))));
else Aux.Atan (Z));
if abs Y > abs X then
Raw_Atan := Half_Pi - Raw_Atan;
@ -747,7 +744,7 @@ is
return 0.0;
end if;
return Float_Type'Base (Aux.Log (Double (X)));
return Aux.Log (X);
end Log;
-- Arbitrary base
@ -767,7 +764,7 @@ is
return 0.0;
end if;
return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
return Aux.Log (X) / Aux.Log (Base);
end Log;
---------
@ -782,7 +779,7 @@ is
return X;
end if;
return Float_Type'Base (Aux.Sin (Double (X)));
return Aux.Sin (X);
end Sin;
-- Arbitrary cycle
@ -816,7 +813,7 @@ is
-- Could test for 12.0 * abs T = Cycle, and return an exact value in
-- those cases. It is not clear this is worth the extra test though.
return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
return Aux.Sin (T / Cycle * Two_Pi);
end Sin;
----------
@ -899,7 +896,7 @@ is
return X;
end if;
return Float_Type'Base (Aux.Sqrt (Double (X)));
return Aux.Sqrt (X);
end Sqrt;
---------
@ -919,7 +916,7 @@ is
-- with, it is impossible for X to be exactly pi/2, and the result is
-- always in range.
return Float_Type'Base (Aux.Tan (Double (X)));
return Aux.Tan (X);
end Tan;
-- Arbitrary cycle
@ -992,7 +989,7 @@ is
return X + X * R;
else
return Float_Type'Base (Aux.Tanh (Double (X)));
return Aux.Tanh (X);
end if;
end Tanh;

View File

@ -0,0 +1,40 @@
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X _ C O M P A T --
-- --
-- S p e c --
-- --
-- Copyright (C) 2001-2020, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package is used to provide the default type for the
-- backward-compatibility Ada.Numerics.Aux interface. This is
-- Long_Float for most platforms, but there is an alternate version
-- for x86 and x86_64 that uses the Long_Long_Float type.
-- This package should not be directly with'ed by an application program
with Ada.Numerics.Aux_Long_Float;
package Ada.Numerics.Aux_Compat renames Ada.Numerics.Aux_Long_Float;

View File

@ -1,12 +1,12 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- GNAT COMPILER COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- A D A . N U M E R I C S . A U X . C O M P A T --
-- --
-- B o d y --
-- S p e c --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- Copyright (C) 2001-2020, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
@ -29,4 +29,11 @@
-- --
------------------------------------------------------------------------------
pragma No_Body;
-- This package is used to provide the default type for the
-- backward-compatibility Ada.Numerics.Aux interface. This is a
-- version for x86 and x86_64, that uses the Long_Long_Float type.
-- This package should not be directly with'ed by an application program
with Ada.Numerics.Aux_Long_Long_Float;
package Ada.Numerics.Aux_Compat renames Ada.Numerics.Aux_Long_Long_Float;

View File

@ -2,10 +2,10 @@
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- A D A . N U M E R I C S . A U X _ F L O A T --
-- --
-- S p e c --
-- (C Library Version for x86) --
-- (C Math Library Version, Float) --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
@ -30,68 +30,58 @@
-- --
------------------------------------------------------------------------------
-- This version is for the x86 using the 80-bit x86 long double format
-- This package provides the basic computational interface for the generic
-- elementary functions. The C library version interfaces with the routines
-- in the C mathematical library, and is thus quite portable.
package Ada.Numerics.Aux is
with Ada.Numerics.Aux_Linker_Options;
pragma Warnings (Off, Ada.Numerics.Aux_Linker_Options);
package Ada.Numerics.Aux_Float is
pragma Pure;
pragma Linker_Options ("-lm");
type Double is new Long_Long_Float;
subtype T is Float;
-- We import these functions directly from C. Note that we label them
-- all as pure functions, because indeed all of them are in fact pure.
function Sin (X : Double) return Double;
pragma Import (Intrinsic, Sin, "sinl");
pragma Pure_Function (Sin);
function Sin (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sinf";
function Cos (X : Double) return Double;
pragma Import (Intrinsic, Cos, "cosl");
pragma Pure_Function (Cos);
function Cos (X : T) return T with
Import, Convention => Intrinsic, External_Name => "cosf";
function Tan (X : Double) return Double;
pragma Import (Intrinsic, Tan, "tanl");
pragma Pure_Function (Tan);
function Tan (X : T) return T with
Import, Convention => Intrinsic, External_Name => "tanf";
function Exp (X : Double) return Double;
pragma Import (Intrinsic, Exp, "expl");
pragma Pure_Function (Exp);
function Exp (X : T) return T with
Import, Convention => Intrinsic, External_Name => "expf";
function Sqrt (X : Double) return Double;
pragma Import (Intrinsic, Sqrt, "sqrtl");
pragma Pure_Function (Sqrt);
function Sqrt (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sqrtf";
function Log (X : Double) return Double;
pragma Import (Intrinsic, Log, "logl");
pragma Pure_Function (Log);
function Log (X : T) return T with
Import, Convention => Intrinsic, External_Name => "logf";
function Acos (X : Double) return Double;
pragma Import (Intrinsic, Acos, "acosl");
pragma Pure_Function (Acos);
function Acos (X : T) return T with
Import, Convention => Intrinsic, External_Name => "acosf";
function Asin (X : Double) return Double;
pragma Import (Intrinsic, Asin, "asinl");
pragma Pure_Function (Asin);
function Asin (X : T) return T with
Import, Convention => Intrinsic, External_Name => "asinf";
function Atan (X : Double) return Double;
pragma Import (Intrinsic, Atan, "atanl");
pragma Pure_Function (Atan);
function Atan (X : T) return T with
Import, Convention => Intrinsic, External_Name => "atanf";
function Sinh (X : Double) return Double;
pragma Import (Intrinsic, Sinh, "sinhl");
pragma Pure_Function (Sinh);
function Sinh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "sinhf";
function Cosh (X : Double) return Double;
pragma Import (Intrinsic, Cosh, "coshl");
pragma Pure_Function (Cosh);
function Cosh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "coshf";
function Tanh (X : Double) return Double;
pragma Import (Intrinsic, Tanh, "tanhl");
pragma Pure_Function (Tanh);
function Tanh (X : T) return T with
Import, Convention => Intrinsic, External_Name => "tanhf";
function Pow (X, Y : Double) return Double;
pragma Import (Intrinsic, Pow, "powl");
pragma Pure_Function (Pow);
function Pow (X, Y : T) return T with
Import, Convention => Intrinsic, External_Name => "powf";
end Ada.Numerics.Aux;
end Ada.Numerics.Aux_Float;

View File

@ -5,7 +5,6 @@
-- A D A . N U M E R I C S . A U X --
-- --
-- S p e c --
-- (C Library Version, non-x86) --
-- --
-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
-- --
@ -30,83 +29,60 @@
-- --
------------------------------------------------------------------------------
-- This package provides the basic computational interface for the generic
-- elementary functions. The C library version interfaces with the routines
-- in the C mathematical library, and is thus quite portable, although it may
-- not necessarily meet the requirements for accuracy in the numerics annex.
-- One advantage of using this package is that it will interface directly to
-- hardware instructions, such as the those provided on the Intel x86.
-- This is a backward-compatibility unit, for users of this internal
-- package before the introduction of Aux.Generic_Float.
-- This version here is for use with normal Unix math functions. Alternative
-- versions are provided for special situations:
-- a-numaux-darwin For PowerPC/Darwin (special handling of sin/cos)
-- a-numaux-libc-x86 For the x86, using 80-bit long double format
-- a-numaux-x86 For the x86, using 80-bit long double format with
-- inline asm statements
-- a-numaux-vxworks For use on VxWorks (where we have no libm.a library)
with Ada.Numerics.Aux_Compat;
package Ada.Numerics.Aux is
pragma Pure;
pragma Linker_Options ("-lm");
package Aux renames Aux_Compat;
type Double is new Long_Float;
-- Type Double is the type used to call the C routines
type Double is new Aux.T;
-- We import these functions directly from C. Note that we label them
-- all as pure functions, because indeed all of them are in fact pure.
subtype T is Double;
subtype W is Aux.T;
function Sin (X : Double) return Double;
pragma Import (Intrinsic, Sin, "sin");
pragma Pure_Function (Sin);
-- Use the Aux implementation.
function Cos (X : Double) return Double;
pragma Import (Intrinsic, Cos, "cos");
pragma Pure_Function (Cos);
function Sin (X : T) return T
is (T (Aux.Sin (W (X))));
function Tan (X : Double) return Double;
pragma Import (Intrinsic, Tan, "tan");
pragma Pure_Function (Tan);
function Cos (X : T) return T
is (T (Aux.Cos (W (X))));
function Exp (X : Double) return Double;
pragma Import (Intrinsic, Exp, "exp");
pragma Pure_Function (Exp);
function Tan (X : T) return T
is (T (Aux.Tan (W (X))));
function Sqrt (X : Double) return Double;
pragma Import (Intrinsic, Sqrt, "sqrt");
pragma Pure_Function (Sqrt);
function Exp (X : T) return T
is (T (Aux.Exp (W (X))));
function Log (X : Double) return Double;
pragma Import (Intrinsic, Log, "log");
pragma Pure_Function (Log);
function Sqrt (X : T) return T
is (T (Aux.Sqrt (W (X))));
function Acos (X : Double) return Double;
pragma Import (Intrinsic, Acos, "acos");
pragma Pure_Function (Acos);
function Log (X : T) return T
is (T (Aux.Log (W (X))));
function Asin (X : Double) return Double;
pragma Import (Intrinsic, Asin, "asin");
pragma Pure_Function (Asin);
function Acos (X : T) return T
is (T (Aux.Acos (W (X))));
function Atan (X : Double) return Double;
pragma Import (Intrinsic, Atan, "atan");
pragma Pure_Function (Atan);
function Asin (X : T) return T
is (T (Aux.Asin (W (X))));
function Sinh (X : Double) return Double;
pragma Import (Intrinsic, Sinh, "sinh");
pragma Pure_Function (Sinh);
function Atan (X : T) return T
is (T (Aux.Atan (W (X))));
function Cosh (X : Double) return Double;
pragma Import (Intrinsic, Cosh, "cosh");
pragma Pure_Function (Cosh);
function Sinh (X : T) return T
is (T (Aux.Sinh (W (X))));
function Tanh (X : Double) return Double;
pragma Import (Intrinsic, Tanh, "tanh");
pragma Pure_Function (Tanh);
function Cosh (X : T) return T
is (T (Aux.Cosh (W (X))));
function Pow (X, Y : Double) return Double;
pragma Import (Intrinsic, Pow, "pow");
pragma Pure_Function (Pow);
function Tanh (X : T) return T
is (T (Aux.Tanh (W (X))));
function Pow (X, Y : T) return T
is (T (Aux.Pow (W (X), W (Y))));
end Ada.Numerics.Aux;

View File

@ -1,211 +0,0 @@
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- --
-- B o d y --
-- (Apple OS X Version) --
-- --
-- Copyright (C) 1998-2020, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
package body Ada.Numerics.Aux is
-----------------------
-- Local subprograms --
-----------------------
function Is_Nan (X : Double) return Boolean;
-- Return True iff X is a IEEE NaN value
procedure Reduce (X : in out Double; Q : out Natural);
-- Implement reduction of X by Pi/2. Q is the quadrant of the final
-- result in the range 0..3. The absolute value of X is at most Pi/4.
-- It is needed to avoid a loss of accuracy for sin near Pi and cos
-- near Pi/2 due to the use of an insufficiently precise value of Pi
-- in the range reduction.
-- The following two functions implement Chebishev approximations
-- of the trigonometric functions in their reduced domain.
-- These approximations have been computed using Maple.
function Sine_Approx (X : Double) return Double;
function Cosine_Approx (X : Double) return Double;
pragma Inline (Reduce);
pragma Inline (Sine_Approx);
pragma Inline (Cosine_Approx);
-------------------
-- Cosine_Approx --
-------------------
function Cosine_Approx (X : Double) return Double is
XX : constant Double := X * X;
begin
return (((((16#8.DC57FBD05F640#E-08 * XX
- 16#4.9F7D00BF25D80#E-06) * XX
+ 16#1.A019F7FDEFCC2#E-04) * XX
- 16#5.B05B058F18B20#E-03) * XX
+ 16#A.AAAAAAAA73FA8#E-02) * XX
- 16#7.FFFFFFFFFFDE4#E-01) * XX
- 16#3.655E64869ECCE#E-14 + 1.0;
end Cosine_Approx;
-----------------
-- Sine_Approx --
-----------------
function Sine_Approx (X : Double) return Double is
XX : constant Double := X * X;
begin
return (((((16#A.EA2D4ABE41808#E-09 * XX
- 16#6.B974C10F9D078#E-07) * XX
+ 16#2.E3BC673425B0E#E-05) * XX
- 16#D.00D00CCA7AF00#E-04) * XX
+ 16#2.222222221B190#E-02) * XX
- 16#2.AAAAAAAAAAA44#E-01) * (XX * X) + X;
end Sine_Approx;
------------
-- Is_Nan --
------------
function Is_Nan (X : Double) return Boolean is
begin
-- The IEEE NaN values are the only ones that do not equal themselves
return X /= X;
end Is_Nan;
------------
-- Reduce --
------------
procedure Reduce (X : in out Double; Q : out Natural) is
Half_Pi : constant := Pi / 2.0;
Two_Over_Pi : constant := 2.0 / Pi;
HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
- P4, HM);
P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
K : Double;
R : Integer;
begin
-- For X < 2.0**HM, all products below are computed exactly.
-- Due to cancellation effects all subtractions are exact as well.
-- As no double extended floating-point number has more than 75
-- zeros after the binary point, the result will be the correctly
-- rounded result of X - K * (Pi / 2.0).
K := X * Two_Over_Pi;
while abs K >= 2.0**HM loop
K := K * M - (K * M - K);
X :=
(((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
K := X * Two_Over_Pi;
end loop;
-- If K is not a number (because X was not finite) raise exception
if Is_Nan (K) then
raise Constraint_Error;
end if;
-- Go through an integer temporary so as to use machine instructions
R := Integer (Double'Rounding (K));
Q := R mod 4;
K := Double (R);
X := (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
end Reduce;
---------
-- Cos --
---------
function Cos (X : Double) return Double is
Reduced_X : Double := abs X;
Quadrant : Natural range 0 .. 3;
begin
if Reduced_X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
case Quadrant is
when 0 =>
return Cosine_Approx (Reduced_X);
when 1 =>
return Sine_Approx (-Reduced_X);
when 2 =>
return -Cosine_Approx (Reduced_X);
when 3 =>
return Sine_Approx (Reduced_X);
end case;
end if;
return Cosine_Approx (Reduced_X);
end Cos;
---------
-- Sin --
---------
function Sin (X : Double) return Double is
Reduced_X : Double := X;
Quadrant : Natural range 0 .. 3;
begin
if abs X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
case Quadrant is
when 0 =>
return Sine_Approx (Reduced_X);
when 1 =>
return Cosine_Approx (Reduced_X);
when 2 =>
return Sine_Approx (-Reduced_X);
when 3 =>
return -Cosine_Approx (Reduced_X);
end case;
end if;
return Sine_Approx (Reduced_X);
end Sin;
end Ada.Numerics.Aux;