[Ada] Compiler crash on named association in return aggregate

gcc/ada/

	* sem_ch6.adb (First_Selector): Utility routine to return the
	first selector or choice in an association.
	(Check_Return_Construct_Accessibility): Modify loop to handle
	named associations when iterating through discriminants.
This commit is contained in:
Justin Squirek 2020-10-16 16:49:58 -04:00 committed by Pierre-Marie de Rodat
parent 8593037b17
commit 1e00c00d8a

View File

@ -784,13 +784,49 @@ package body Sem_Ch6 is
------------------------------------------
procedure Check_Return_Construct_Accessibility (Return_Stmt : Node_Id) is
Return_Con : Node_Id;
Assoc : Node_Id := Empty;
Assoc_Expr : Node_Id;
Disc : Entity_Id;
function First_Selector (Assoc : Node_Id) return Node_Id;
-- Obtain the first selector or choice from a given association
--------------------
-- First_Selector --
--------------------
function First_Selector (Assoc : Node_Id) return Node_Id is
begin
if Nkind (Assoc) = N_Component_Association then
return First (Choices (Assoc));
elsif Nkind (Assoc) = N_Discriminant_Association then
return (First (Selector_Names (Assoc)));
else
raise Program_Error;
end if;
end First_Selector;
-- Local declarations
Assoc : Node_Id := Empty;
-- Assoc should perhaps be renamed and declared as a
-- Node_Or_Entity_Id since it encompasses not only component and
-- discriminant associations, but also discriminant components within
-- a type declaration or subtype indication ???
Assoc_Expr : Node_Id;
Assoc_Present : Boolean := False;
Unseen_Disc_Count : Nat := 0;
Seen_Discs : Elist_Id;
Disc : Entity_Id;
First_Disc : Entity_Id;
Obj_Decl : Node_Id;
Return_Con : Node_Id;
Unqual : Node_Id;
-- Start of processing for Check_Return_Construct_Accessibility
begin
-- Only perform checks on record types with access discriminants and
-- non-internally generated functions.
@ -845,7 +881,7 @@ package body Sem_Ch6 is
Unqual := Unqualify (Original_Node (Return_Con));
-- Obtain the corresponding declaration based on the return object's
-- Get the corresponding declaration based on the return object's
-- identifier.
if Nkind (Unqual) = N_Identifier
@ -982,30 +1018,175 @@ package body Sem_Ch6 is
(Etype (Defining_Identifier (Obj_Decl)));
end if;
-- Preserve the first discriminant for checking named associations
First_Disc := Disc;
-- Count the number of discriminants for processing an aggregate
-- which includes an others.
Disc := First_Disc;
while Present (Disc) loop
Unseen_Disc_Count := Unseen_Disc_Count + 1;
Next_Discriminant (Disc);
end loop;
Seen_Discs := New_Elmt_List;
-- Loop through each of the discriminants and check each expression
-- associated with an anonymous access discriminant.
while Present (Assoc) and then Present (Disc) loop
-- Unwrap the associated expression
-- When named associations occur in the return aggregate then
-- discriminants can be in any order, so we need to ensure we do
-- not continue to loop when all discriminants have been seen.
Disc := First_Disc;
while Present (Assoc)
and then (Present (Disc) or else Assoc_Present)
and then Unseen_Disc_Count > 0
loop
-- Handle named associations by searching through the names of
-- the relevant discriminant components.
if Nkind (Assoc)
in N_Component_Association | N_Discriminant_Association
then
Assoc_Expr := Expression (Assoc);
Assoc_Expr := Expression (Assoc);
Assoc_Present := True;
-- We currently don't handle box initialized discriminants,
-- however, since default initialized anonymous access
-- discriminants are a corner case, this is ok for now ???
if Nkind (Assoc) = N_Component_Association
and then Box_Present (Assoc)
then
Assoc_Present := False;
if Nkind (First_Selector (Assoc)) = N_Others_Choice then
Unseen_Disc_Count := 0;
end if;
-- When others is present we must identify a discriminant we
-- haven't already seen so as to get the appropriate type for
-- the static accessibility check.
-- This works because all components within an others clause
-- must have the same type.
elsif Nkind (First_Selector (Assoc)) = N_Others_Choice then
Disc := First_Disc;
Outer : while Present (Disc) loop
declare
Current_Seen_Disc : Elmt_Id;
begin
-- Move through the list of identified discriminants
Current_Seen_Disc := First_Elmt (Seen_Discs);
while Present (Current_Seen_Disc) loop
-- Exit the loop when we found a match
exit when
Chars (Node (Current_Seen_Disc)) = Chars (Disc);
Next_Elmt (Current_Seen_Disc);
end loop;
-- When we have exited the above loop without finding
-- a match then we know that Disc has not been seen.
exit Outer when No (Current_Seen_Disc);
end;
Next_Discriminant (Disc);
end loop Outer;
-- If we got to an others clause with a non-zero
-- discriminant count there must be a discriminant left to
-- check.
pragma Assert (Present (Disc));
-- Set the unseen discriminant count to zero because we know
-- an others clause sets all remaining components of an
-- aggregate.
Unseen_Disc_Count := 0;
-- Move through each of the selectors in the named association
-- and obtain a discriminant for accessibility checking if one
-- is referenced in the list. Also track which discriminants
-- are referenced for the purpose of handling an others clause.
else
declare
Assoc_Choice : Node_Id;
Curr_Disc : Node_Id;
begin
Disc := Empty;
Curr_Disc := First_Disc;
while Present (Curr_Disc) loop
-- Check each of the choices in the associations for a
-- match to the name of the current discriminant.
Assoc_Choice := First_Selector (Assoc);
while Present (Assoc_Choice) loop
-- When the name matches we track that we have seen
-- the discriminant, but instead of exiting the
-- loop we continue iterating to make sure all the
-- discriminants within the named association get
-- tracked.
if Chars (Assoc_Choice) = Chars (Curr_Disc) then
Append_Elmt (Curr_Disc, Seen_Discs);
Disc := Curr_Disc;
Unseen_Disc_Count := Unseen_Disc_Count - 1;
end if;
Next (Assoc_Choice);
end loop;
Next_Discriminant (Curr_Disc);
end loop;
end;
end if;
-- Unwrap the associated expression if we are looking at a default
-- initialized type declaration. In this case Assoc is not really
-- an association, but a component declaration. Should Assoc be
-- renamed in some way to be more clear ???
-- This occurs when the return object does not initialize
-- discriminant and instead relies on the type declaration for
-- their supplied values.
elsif Nkind (Assoc) in N_Entity
and then Ekind (Assoc) = E_Discriminant
then
Assoc_Expr := Discriminant_Default_Value (Assoc);
Append_Elmt (Disc, Seen_Discs);
Assoc_Expr := Discriminant_Default_Value (Assoc);
Unseen_Disc_Count := Unseen_Disc_Count - 1;
-- Otherwise, there is nothing to do because Assoc is an
-- expression within the return aggregate itself.
else
Assoc_Expr := Assoc;
Append_Elmt (Disc, Seen_Discs);
Assoc_Expr := Assoc;
Unseen_Disc_Count := Unseen_Disc_Count - 1;
end if;
-- Check the accessibility level of the expression when the
-- discriminant is of an anonymous access type.
if Present (Assoc_Expr)
and then Present (Disc)
and then Ekind (Etype (Disc)) = E_Anonymous_Access_Type
then
-- Perform a static check first, if possible
@ -1019,8 +1200,8 @@ package body Sem_Ch6 is
Error_Msg_N
("access discriminant in return object would be a dangling"
& " reference", Return_Stmt);
exit;
exit;
end if;
-- Otherwise, generate a dynamic check based on the extra
@ -1041,9 +1222,16 @@ package body Sem_Ch6 is
end if;
end if;
-- Iterate over the discriminants
-- Iterate over the discriminants, except when we have encountered
-- a named association since the discriminant order becomes
-- irrelevant in that case.
if not Assoc_Present then
Next_Discriminant (Disc);
end if;
-- Iterate over associations
Disc := Next_Discriminant (Disc);
if not Is_List_Member (Assoc) then
exit;
else