ira: Handle "soft" conflicts between cap and non-cap allocnos

This patch looks for allocno conflicts of the following form:

- One allocno (X) is a cap allocno for some non-cap allocno X2.
- X2 belongs to some loop L2.
- The other allocno (Y) is a non-cap allocno.
- Y is an ancestor of some allocno Y2 in L2.
- Y2 is not referenced in L2 (that is, ALLOCNO_NREFS (Y2) == 0).
- Y can use a different allocation from Y2.

In this case, Y's register is live across L2 but is not used within it,
whereas X's register is used only within L2.  The conflict is therefore
only "soft", in that it can easily be avoided by spilling Y2 inside L2
without affecting any insn references.

In principle we could do this for ALLOCNO_NREFS (Y2) != 0 too, with the
callers then taking Y2's ALLOCNO_MEMORY_COST into account.  There would
then be no "cliff edge" between a Y2 that has no references and a Y2 that
has (say) a single cold reference.

However, doing that isn't necessary for the PR and seems to give
variable results in practice.  (fotonik3d_r improves slightly but
namd_r regresses slightly.)  It therefore seemed better to start
with the higher-value zero-reference case and see how things go.

On top of the previous patches in the series, this fixes the exchange2
regression seen in GCC 11.

gcc/
	PR rtl-optimization/98782
	* ira-int.h (ira_soft_conflict): Declare.
	* ira-color.c (max_soft_conflict_loop_depth): New constant.
	(ira_soft_conflict): New function.
	(spill_soft_conflicts): Likewise.
	(assign_hard_reg): Use them to handle the case described by
	the comment above ira_soft_conflict.
	(improve_allocation): Likewise.
	* ira.c (check_allocation): Allow allocnos with "soft" conflicts
	to share the same register.

gcc/testsuite/
	* gcc.target/aarch64/reg-alloc-4.c: New test.
This commit is contained in:
Richard Sandiford 2022-01-10 14:47:09 +00:00
parent 01f3e6a40e
commit 037cc0b4a6
4 changed files with 326 additions and 30 deletions

View File

@ -36,6 +36,11 @@ along with GCC; see the file COPYING3. If not see
#include "reload.h"
#include "cfgloop.h"
/* To prevent soft conflict detection becoming quadratic in the
loop depth. Only for very pathological cases, so it hardly
seems worth a --param. */
const int max_soft_conflict_loop_depth = 64;
typedef struct allocno_hard_regs *allocno_hard_regs_t;
/* The structure contains information about hard registers can be
@ -1707,6 +1712,167 @@ calculate_saved_nregs (int hard_regno, machine_mode mode)
return nregs;
}
/* Allocnos A1 and A2 are known to conflict. Check whether, in some loop L
that is either the current loop or a nested subloop, the conflict is of
the following form:
- One allocno (X) is a cap allocno for some non-cap allocno X2.
- X2 belongs to some loop L2.
- The other allocno (Y) is a non-cap allocno.
- Y is an ancestor of some allocno Y2 in L2. (Note that such a Y2
must exist, given that X and Y conflict.)
- Y2 is not referenced in L2 (that is, ALLOCNO_NREFS (Y2) == 0).
- Y can use a different allocation from Y2.
In this case, Y's register is live across L2 but is not used within it,
whereas X's register is used only within L2. The conflict is therefore
only "soft", in that it can easily be avoided by spilling Y2 inside L2
without affecting any insn references.
If the conflict does have this form, return the Y2 that would need to be
spilled in order to allow X and Y (and thus A1 and A2) to use the same
register. Return null otherwise. Returning null is conservatively correct;
any nonnnull return value is an optimization. */
ira_allocno_t
ira_soft_conflict (ira_allocno_t a1, ira_allocno_t a2)
{
/* Search for the loop L and its associated allocnos X and Y. */
int search_depth = 0;
while (ALLOCNO_CAP_MEMBER (a1) && ALLOCNO_CAP_MEMBER (a2))
{
a1 = ALLOCNO_CAP_MEMBER (a1);
a2 = ALLOCNO_CAP_MEMBER (a2);
if (search_depth++ > max_soft_conflict_loop_depth)
return nullptr;
}
/* This must be true if A1 and A2 conflict. */
ira_assert (ALLOCNO_LOOP_TREE_NODE (a1) == ALLOCNO_LOOP_TREE_NODE (a2));
/* Make A1 the cap allocno (X in the comment above) and A2 the
non-cap allocno (Y in the comment above). */
if (ALLOCNO_CAP_MEMBER (a2))
std::swap (a1, a2);
if (!ALLOCNO_CAP_MEMBER (a1))
return nullptr;
/* Search for the real allocno that A1 caps (X2 in the comment above). */
do
{
a1 = ALLOCNO_CAP_MEMBER (a1);
if (search_depth++ > max_soft_conflict_loop_depth)
return nullptr;
}
while (ALLOCNO_CAP_MEMBER (a1));
/* Find the associated allocno for A2 (Y2 in the comment above). */
auto node = ALLOCNO_LOOP_TREE_NODE (a1);
auto local_a2 = node->regno_allocno_map[ALLOCNO_REGNO (a2)];
/* Find the parent of LOCAL_A2/Y2. LOCAL_A2 must be a descendant of A2
for the conflict query to make sense, so this parent lookup must succeed.
If the parent allocno has no references, it is usually cheaper to
spill at that loop level instead. Keep searching until we find
a parent allocno that does have references (but don't look past
the starting allocno). */
ira_allocno_t local_parent_a2;
for (;;)
{
local_parent_a2 = ira_parent_allocno (local_a2);
if (local_parent_a2 == a2 || ALLOCNO_NREFS (local_parent_a2) != 0)
break;
local_a2 = local_parent_a2;
}
if (CHECKING_P)
{
/* Sanity check to make sure that the conflict we've been given
makes sense. */
auto test_a2 = local_parent_a2;
while (test_a2 != a2)
{
test_a2 = ira_parent_allocno (test_a2);
ira_assert (test_a2);
}
}
if (local_a2
&& ALLOCNO_NREFS (local_a2) == 0
&& ira_subloop_allocnos_can_differ_p (local_parent_a2))
return local_a2;
return nullptr;
}
/* The caller has decided to allocate HREGNO to A and has proved that
this is safe. However, the allocation might require the kind of
spilling described in the comment above ira_soft_conflict.
The caller has recorded that:
- The allocnos in ALLOCNOS_TO_SPILL are the ones that would need
to be spilled to satisfy soft conflicts for at least one allocation
(not necessarily HREGNO).
- The soft conflicts apply only to A allocations that overlap
SOFT_CONFLICT_REGS.
If allocating HREGNO is subject to any soft conflicts, record the
subloop allocnos that need to be spilled. */
static void
spill_soft_conflicts (ira_allocno_t a, bitmap allocnos_to_spill,
HARD_REG_SET soft_conflict_regs, int hregno)
{
auto nregs = hard_regno_nregs (hregno, ALLOCNO_MODE (a));
bitmap_iterator bi;
unsigned int i;
EXECUTE_IF_SET_IN_BITMAP (allocnos_to_spill, 0, i, bi)
{
/* SPILL_A needs to be spilled for at least one allocation
(not necessarily this one). */
auto spill_a = ira_allocnos[i];
/* Find the corresponding allocno for this loop. */
auto conflict_a = spill_a;
do
{
conflict_a = ira_parent_or_cap_allocno (conflict_a);
ira_assert (conflict_a);
}
while (ALLOCNO_LOOP_TREE_NODE (conflict_a)->level
> ALLOCNO_LOOP_TREE_NODE (a)->level);
ira_assert (ALLOCNO_LOOP_TREE_NODE (conflict_a)
== ALLOCNO_LOOP_TREE_NODE (a));
if (conflict_a == a)
{
/* SPILL_A is a descendant of A. We don't know (and don't need
to know) which cap allocnos have a soft conflict with A.
All we need to do is test whether the soft conflict applies
to the chosen allocation. */
if (ira_hard_reg_set_intersection_p (hregno, ALLOCNO_MODE (a),
soft_conflict_regs))
ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
}
else
{
/* SPILL_A is a descendant of CONFLICT_A, which has a soft conflict
with A. Test whether the soft conflict applies to the current
allocation. */
ira_assert (ira_soft_conflict (a, conflict_a) == spill_a);
auto conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a);
ira_assert (conflict_hregno >= 0);
auto conflict_nregs = hard_regno_nregs (conflict_hregno,
ALLOCNO_MODE (conflict_a));
if (hregno + nregs > conflict_hregno
&& conflict_hregno + conflict_nregs > hregno)
ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
}
}
}
/* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
that the function called from function
`ira_reassign_conflict_allocnos' and `allocno_reload_assign'. In
@ -1746,6 +1912,8 @@ assign_hard_reg (ira_allocno_t a, bool retry_p)
#ifdef STACK_REGS
bool no_stack_reg_p;
#endif
auto_bitmap allocnos_to_spill;
HARD_REG_SET soft_conflict_regs = {};
ira_assert (! ALLOCNO_ASSIGNED_P (a));
get_conflict_and_start_profitable_regs (a, retry_p,
@ -1833,23 +2001,56 @@ assign_hard_reg (ira_allocno_t a, bool retry_p)
mode = ALLOCNO_MODE (conflict_a);
conflict_nregs = hard_regno_nregs (hard_regno, mode);
if (conflict_nregs == n_objects && conflict_nregs > 1)
auto spill_a = (retry_p
? nullptr
: ira_soft_conflict (a, conflict_a));
if (spill_a)
{
int num = OBJECT_SUBWORD (conflict_obj);
if (REG_WORDS_BIG_ENDIAN)
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + n_objects - num - 1);
else
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + num);
if (bitmap_set_bit (allocnos_to_spill,
ALLOCNO_NUM (spill_a)))
{
ira_loop_border_costs border_costs (spill_a);
auto cost = border_costs.spill_inside_loop_cost ();
auto note_conflict = [&](int r)
{
SET_HARD_REG_BIT (soft_conflict_regs, r);
auto hri = ira_class_hard_reg_index[aclass][r];
if (hri >= 0)
{
costs[hri] += cost;
full_costs[hri] += cost;
}
};
for (int r = hard_regno;
r >= 0 && (int) end_hard_regno (mode, r) > hard_regno;
r--)
note_conflict (r);
for (int r = hard_regno + 1;
r < hard_regno + conflict_nregs;
r++)
note_conflict (r);
}
}
else
conflicting_regs[word]
|= ira_reg_mode_hard_regset[hard_regno][mode];
if (hard_reg_set_subset_p (profitable_hard_regs,
conflicting_regs[word]))
goto fail;
{
if (conflict_nregs == n_objects && conflict_nregs > 1)
{
int num = OBJECT_SUBWORD (conflict_obj);
if (REG_WORDS_BIG_ENDIAN)
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + n_objects - num - 1);
else
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + num);
}
else
conflicting_regs[word]
|= ira_reg_mode_hard_regset[hard_regno][mode];
if (hard_reg_set_subset_p (profitable_hard_regs,
conflicting_regs[word]))
goto fail;
}
}
}
else if (! retry_p
@ -1962,6 +2163,8 @@ assign_hard_reg (ira_allocno_t a, bool retry_p)
{
for (i = hard_regno_nregs (best_hard_regno, mode) - 1; i >= 0; i--)
allocated_hardreg_p[best_hard_regno + i] = true;
spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs,
best_hard_regno);
}
if (! retry_p)
restore_costs_from_copies (a);
@ -2983,6 +3186,8 @@ improve_allocation (void)
assigning hard register to allocno A even without spilling
conflicting allocnos. */
continue;
auto_bitmap allocnos_to_spill;
HARD_REG_SET soft_conflict_regs = {};
mode = ALLOCNO_MODE (a);
nwords = ALLOCNO_NUM_OBJECTS (a);
/* Process each allocno conflicting with A and update the cost
@ -3008,31 +3213,49 @@ improve_allocation (void)
ALLOCNO_COLOR_DATA (conflict_a)->temp = check;
if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
continue;
spill_cost = ALLOCNO_UPDATED_MEMORY_COST (conflict_a);
k = (ira_class_hard_reg_index
[ALLOCNO_CLASS (conflict_a)][conflict_hregno]);
ira_assert (k >= 0);
if ((allocno_costs = ALLOCNO_HARD_REG_COSTS (conflict_a))
!= NULL)
spill_cost -= allocno_costs[k];
auto spill_a = ira_soft_conflict (a, conflict_a);
if (spill_a)
{
if (!bitmap_set_bit (allocnos_to_spill,
ALLOCNO_NUM (spill_a)))
continue;
ira_loop_border_costs border_costs (spill_a);
spill_cost = border_costs.spill_inside_loop_cost ();
}
else
spill_cost -= ALLOCNO_UPDATED_CLASS_COST (conflict_a);
spill_cost
+= allocno_copy_cost_saving (conflict_a, conflict_hregno);
{
spill_cost = ALLOCNO_UPDATED_MEMORY_COST (conflict_a);
k = (ira_class_hard_reg_index
[ALLOCNO_CLASS (conflict_a)][conflict_hregno]);
ira_assert (k >= 0);
if ((allocno_costs = ALLOCNO_HARD_REG_COSTS (conflict_a))
!= NULL)
spill_cost -= allocno_costs[k];
else
spill_cost -= ALLOCNO_UPDATED_CLASS_COST (conflict_a);
spill_cost
+= allocno_copy_cost_saving (conflict_a, conflict_hregno);
}
conflict_nregs = hard_regno_nregs (conflict_hregno,
ALLOCNO_MODE (conflict_a));
auto note_conflict = [&](int r)
{
if (check_hard_reg_p (a, r,
conflicting_regs, profitable_hard_regs))
{
if (spill_a)
SET_HARD_REG_BIT (soft_conflict_regs, r);
costs[r] += spill_cost;
}
};
for (r = conflict_hregno;
r >= 0 && (int) end_hard_regno (mode, r) > conflict_hregno;
r--)
if (check_hard_reg_p (a, r,
conflicting_regs, profitable_hard_regs))
costs[r] += spill_cost;
note_conflict (r);
for (r = conflict_hregno + 1;
r < conflict_hregno + conflict_nregs;
r++)
if (check_hard_reg_p (a, r,
conflicting_regs, profitable_hard_regs))
costs[r] += spill_cost;
note_conflict (r);
}
}
min_cost = INT_MAX;
@ -3055,6 +3278,7 @@ improve_allocation (void)
by spilling some conflicting allocnos does not improve the
allocation cost. */
continue;
spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs, best);
nregs = hard_regno_nregs (best, mode);
/* Now spill conflicting allocnos which contain a hard register
of A when we assign the best chosen hard register to it. */

View File

@ -1067,6 +1067,7 @@ extern void ira_debug_conflicts (bool);
extern void ira_build_conflicts (void);
/* ira-color.c */
extern ira_allocno_t ira_soft_conflict (ira_allocno_t, ira_allocno_t);
extern void ira_debug_hard_regs_forest (void);
extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
extern void ira_reassign_conflict_allocnos (int);

View File

@ -2649,6 +2649,8 @@ check_allocation (void)
int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
if (conflict_hard_regno < 0)
continue;
if (ira_soft_conflict (a, conflict_a))
continue;
conflict_nregs = hard_regno_nregs (conflict_hard_regno,
ALLOCNO_MODE (conflict_a));

View File

@ -0,0 +1,69 @@
/* { dg-options "-O2 -fno-schedule-insns -fno-schedule-insns2" } */
/* { dg-final { check-function-bodies "**" "" "" { target lp64 } } } */
#define PROB 0.1
struct L
{
int data;
volatile struct L *next;
volatile struct L *inner;
};
/* The thing we're testing here is that the !head->inner path of the outer loop
body has no stack accesses. It's possible that we'll need to update this
pattern for unrelated code changes. but the test should be XFAILed rather
than changed if any new stack accesses occur on the !head->inner path. */
/*
** foo:
** ...
** ldr (w[0-9]+), \[(x[0-9]+)\]
** add (w[0-9]+), (?:\3, \1|\1, \3)
** ldr (x[0-9]+), \[\2, #?16\]
** str \3, \[\2\]
** ldr \2, \[\2, #?8\]
** cbn?z \4, .*
** ...
** ret
*/
void
foo (volatile struct L *head, int inc)
{
while (head)
{
/* Clobber all call-preserved GPRs, so that the loop has to use
call-clobbered GPRs if it is to avoid spilling. */
asm volatile ("" :::
"x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28");
inc = head->data + inc;
volatile struct L *inner = head->inner;
head->data = inc;
head = head->next;
if (__builtin_expect_with_probability (inner != 0, 0, PROB))
for (int i = 0; i < 1000; ++i)
asm volatile ("" :: /* example allocation: */
"r" (i), /* x0 */
"r" (inner), /* x1 */
"r" (inner->next), /* x2 */
"r" (inner->next), /* x3 */
"r" (inner->next), /* x4 */
"r" (inner->next), /* x5 */
"r" (inner->next), /* x6 */
"r" (inner->next), /* x7 */
"r" (inner->next), /* x8 */
"r" (inner->next), /* x9 */
"r" (inner->next), /* x10 */
"r" (inner->next), /* x11 */
"r" (inner->next), /* x12 */
"r" (inner->next), /* x13 */
"r" (inner->next), /* x14 */
"r" (inner->next), /* x15 */
"r" (inner->next), /* x16 */
"r" (inner->next), /* x17 */
"r" (inner->next), /* x18 */
"r" (inner->next) : /* x30 */
"x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28");
}
}