mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-11 05:34:28 +08:00
197 lines
5.5 KiB
C
197 lines
5.5 KiB
C
|
/* Implementation of the MATMUL intrinsic
|
||
|
Copyright 2002, 2005 Free Software Foundation, Inc.
|
||
|
Contributed by Paul Brook <paul@nowt.org>
|
||
|
|
||
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||
|
|
||
|
Libgfortran is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2 of the License, or (at your option) any later version.
|
||
|
|
||
|
In addition to the permissions in the GNU General Public License, the
|
||
|
Free Software Foundation gives you unlimited permission to link the
|
||
|
compiled version of this file into combinations with other programs,
|
||
|
and to distribute those combinations without any restriction coming
|
||
|
from the use of this file. (The General Public License restrictions
|
||
|
do apply in other respects; for example, they cover modification of
|
||
|
the file, and distribution when not linked into a combine
|
||
|
executable.)
|
||
|
|
||
|
Libgfortran is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public
|
||
|
License along with libgfortran; see the file COPYING. If not,
|
||
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
|
Boston, MA 02110-1301, USA. */
|
||
|
|
||
|
#include "config.h"
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
#include "libgfortran.h"
|
||
|
|
||
|
#if defined (HAVE_GFC_LOGICAL_16)
|
||
|
|
||
|
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
||
|
Either a or b can be rank 1. In this case x or y is 1. */
|
||
|
|
||
|
extern void matmul_l16 (gfc_array_l16 *, gfc_array_l4 *, gfc_array_l4 *);
|
||
|
export_proto(matmul_l16);
|
||
|
|
||
|
void
|
||
|
matmul_l16 (gfc_array_l16 * retarray, gfc_array_l4 * a, gfc_array_l4 * b)
|
||
|
{
|
||
|
GFC_INTEGER_4 *abase;
|
||
|
GFC_INTEGER_4 *bbase;
|
||
|
GFC_LOGICAL_16 *dest;
|
||
|
index_type rxstride;
|
||
|
index_type rystride;
|
||
|
index_type xcount;
|
||
|
index_type ycount;
|
||
|
index_type xstride;
|
||
|
index_type ystride;
|
||
|
index_type x;
|
||
|
index_type y;
|
||
|
|
||
|
GFC_INTEGER_4 *pa;
|
||
|
GFC_INTEGER_4 *pb;
|
||
|
index_type astride;
|
||
|
index_type bstride;
|
||
|
index_type count;
|
||
|
index_type n;
|
||
|
|
||
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
||
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
||
|
|
||
|
if (retarray->data == NULL)
|
||
|
{
|
||
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||
|
{
|
||
|
retarray->dim[0].lbound = 0;
|
||
|
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
|
||
|
retarray->dim[0].stride = 1;
|
||
|
}
|
||
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||
|
{
|
||
|
retarray->dim[0].lbound = 0;
|
||
|
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
|
||
|
retarray->dim[0].stride = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
retarray->dim[0].lbound = 0;
|
||
|
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
|
||
|
retarray->dim[0].stride = 1;
|
||
|
|
||
|
retarray->dim[1].lbound = 0;
|
||
|
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
|
||
|
retarray->dim[1].stride = retarray->dim[0].ubound+1;
|
||
|
}
|
||
|
|
||
|
retarray->data
|
||
|
= internal_malloc_size (sizeof (GFC_LOGICAL_16) * size0 ((array_t *) retarray));
|
||
|
retarray->offset = 0;
|
||
|
}
|
||
|
|
||
|
abase = a->data;
|
||
|
if (GFC_DESCRIPTOR_SIZE (a) != 4)
|
||
|
{
|
||
|
assert (GFC_DESCRIPTOR_SIZE (a) == 8);
|
||
|
abase = GFOR_POINTER_L8_TO_L4 (abase);
|
||
|
}
|
||
|
bbase = b->data;
|
||
|
if (GFC_DESCRIPTOR_SIZE (b) != 4)
|
||
|
{
|
||
|
assert (GFC_DESCRIPTOR_SIZE (b) == 8);
|
||
|
bbase = GFOR_POINTER_L8_TO_L4 (bbase);
|
||
|
}
|
||
|
dest = retarray->data;
|
||
|
|
||
|
if (retarray->dim[0].stride == 0)
|
||
|
retarray->dim[0].stride = 1;
|
||
|
if (a->dim[0].stride == 0)
|
||
|
a->dim[0].stride = 1;
|
||
|
if (b->dim[0].stride == 0)
|
||
|
b->dim[0].stride = 1;
|
||
|
|
||
|
|
||
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
||
|
{
|
||
|
rxstride = retarray->dim[0].stride;
|
||
|
rystride = rxstride;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rxstride = retarray->dim[0].stride;
|
||
|
rystride = retarray->dim[1].stride;
|
||
|
}
|
||
|
|
||
|
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
||
|
one. */
|
||
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
||
|
{
|
||
|
astride = a->dim[0].stride;
|
||
|
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||
|
xstride = 0;
|
||
|
rxstride = 0;
|
||
|
xcount = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
astride = a->dim[1].stride;
|
||
|
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
||
|
xstride = a->dim[0].stride;
|
||
|
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
||
|
}
|
||
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
||
|
{
|
||
|
bstride = b->dim[0].stride;
|
||
|
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||
|
ystride = 0;
|
||
|
rystride = 0;
|
||
|
ycount = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bstride = b->dim[0].stride;
|
||
|
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
||
|
ystride = b->dim[1].stride;
|
||
|
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
||
|
}
|
||
|
|
||
|
for (y = 0; y < ycount; y++)
|
||
|
{
|
||
|
for (x = 0; x < xcount; x++)
|
||
|
{
|
||
|
/* Do the summation for this element. For real and integer types
|
||
|
this is the same as DOT_PRODUCT. For complex types we use do
|
||
|
a*b, not conjg(a)*b. */
|
||
|
pa = abase;
|
||
|
pb = bbase;
|
||
|
*dest = 0;
|
||
|
|
||
|
for (n = 0; n < count; n++)
|
||
|
{
|
||
|
if (*pa && *pb)
|
||
|
{
|
||
|
*dest = 1;
|
||
|
break;
|
||
|
}
|
||
|
pa += astride;
|
||
|
pb += bstride;
|
||
|
}
|
||
|
|
||
|
dest += rxstride;
|
||
|
abase += xstride;
|
||
|
}
|
||
|
abase -= xstride * xcount;
|
||
|
bbase += ystride;
|
||
|
dest += rystride - (rxstride * xcount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|