gcc/libstdc++/stl/function.h

635 lines
18 KiB
C
Raw Normal View History

1997-08-22 06:57:35 +08:00
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
#ifndef __SGI_STL_FUNCTION_H
#define __SGI_STL_FUNCTION_H
#include <stddef.h>
#include <stl_config.h>
template <class T>
inline bool operator!=(const T& x, const T& y) {
return !(x == y);
}
template <class T>
inline bool operator>(const T& x, const T& y) {
return y < x;
}
template <class T>
inline bool operator<=(const T& x, const T& y) {
return !(y < x);
}
template <class T>
inline bool operator>=(const T& x, const T& y) {
return !(x < y);
}
template <class Arg, class Result>
struct unary_function {
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function {
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template <class T>
struct plus : public binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x + y; }
};
template <class T>
struct minus : public binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x - y; }
};
template <class T>
struct multiplies : public binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x * y; }
};
template <class T>
struct divides : public binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x / y; }
};
template <class T> inline T identity_element(plus<T>) { return T(0); }
template <class T> inline T identity_element(multiplies<T>) { return T(1); }
template <class T>
struct modulus : public binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x % y; }
};
template <class T>
struct negate : public unary_function<T, T> {
T operator()(const T& x) const { return -x; }
};
template <class T>
struct equal_to : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x == y; }
};
template <class T>
struct not_equal_to : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x != y; }
};
template <class T>
struct greater : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x > y; }
};
template <class T>
struct less : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x < y; }
};
template <class T>
struct greater_equal : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x >= y; }
};
template <class T>
struct less_equal : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x <= y; }
};
template <class T>
struct logical_and : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x && y; }
};
template <class T>
struct logical_or : public binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x || y; }
};
template <class T>
struct logical_not : public unary_function<T, bool> {
bool operator()(const T& x) const { return !x; }
};
template <class Predicate>
class unary_negate
: public unary_function<typename Predicate::argument_type, bool> {
protected:
Predicate pred;
public:
explicit unary_negate(const Predicate& x) : pred(x) {}
bool operator()(const argument_type& x) const { return !pred(x); }
};
template <class Predicate>
inline unary_negate<Predicate> not1(const Predicate& pred) {
return unary_negate<Predicate>(pred);
}
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type,
bool> {
protected:
Predicate pred;
public:
explicit binary_negate(const Predicate& x) : pred(x) {}
bool operator()(const first_argument_type& x,
const second_argument_type& y) const {
return !pred(x, y);
}
};
template <class Predicate>
inline binary_negate<Predicate> not2(const Predicate& pred) {
return binary_negate<Predicate>(pred);
}
template <class Operation>
class binder1st
: public unary_function<typename Operation::second_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st(const Operation& x,
const typename Operation::first_argument_type& y)
: op(x), value(y) {}
result_type operator()(const argument_type& x) const {
return op(value, x);
}
};
template <class Operation, class T>
inline binder1st<Operation> bind1st(const Operation& op, const T& x) {
typedef typename Operation::first_argument_type arg1_type;
return binder1st<Operation>(op, arg1_type(x));
}
template <class Operation>
class binder2nd
: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& x,
const typename Operation::second_argument_type& y)
: op(x), value(y) {}
result_type operator()(const argument_type& x) const {
return op(x, value);
}
};
template <class Operation, class T>
inline binder2nd<Operation> bind2nd(const Operation& op, const T& x) {
typedef typename Operation::second_argument_type arg2_type;
return binder2nd<Operation>(op, arg2_type(x));
}
template <class Operation1, class Operation2>
class unary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
protected:
Operation1 op1;
Operation2 op2;
public:
unary_compose(const Operation1& x, const Operation2& y) : op1(x), op2(y) {}
result_type operator()(const argument_type& x) const {
return op1(op2(x));
}
};
template <class Operation1, class Operation2>
inline unary_compose<Operation1, Operation2> compose1(const Operation1& op1,
const Operation2& op2) {
return unary_compose<Operation1, Operation2>(op1, op2);
}
template <class Operation1, class Operation2, class Operation3>
class binary_compose
: public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
protected:
Operation1 op1;
Operation2 op2;
Operation3 op3;
public:
binary_compose(const Operation1& x, const Operation2& y,
const Operation3& z) : op1(x), op2(y), op3(z) { }
result_type operator()(const argument_type& x) const {
return op1(op2(x), op3(x));
}
};
template <class Operation1, class Operation2, class Operation3>
inline binary_compose<Operation1, Operation2, Operation3>
compose2(const Operation1& op1, const Operation2& op2, const Operation3& op3) {
return binary_compose<Operation1, Operation2, Operation3>(op1, op2, op3);
}
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
protected:
Result (*ptr)(Arg);
public:
pointer_to_unary_function() {}
explicit pointer_to_unary_function(Result (*x)(Arg)) : ptr(x) {}
Result operator()(Arg x) const { return ptr(x); }
};
template <class Arg, class Result>
inline pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg)) {
return pointer_to_unary_function<Arg, Result>(x);
}
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result> {
protected:
Result (*ptr)(Arg1, Arg2);
public:
pointer_to_binary_function() {}
explicit pointer_to_binary_function(Result (*x)(Arg1, Arg2)) : ptr(x) {}
Result operator()(Arg1 x, Arg2 y) const { return ptr(x, y); }
};
template <class Arg1, class Arg2, class Result>
inline pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*x)(Arg1, Arg2)) {
return pointer_to_binary_function<Arg1, Arg2, Result>(x);
}
template <class T>
struct identity : public unary_function<T, T> {
const T& operator()(const T& x) const { return x; }
};
template <class Pair>
struct select1st : public unary_function<Pair, typename Pair::first_type> {
const typename Pair::first_type& operator()(const Pair& x) const
{
return x.first;
}
};
template <class Pair>
struct select2nd : public unary_function<Pair, typename Pair::second_type> {
const typename Pair::second_type& operator()(const Pair& x) const
{
return x.second;
}
};
template <class Arg1, class Arg2>
struct project1st : public binary_function<Arg1, Arg2, Arg1> {
Arg1 operator()(const Arg1& x, const Arg2&) const { return x; }
};
template <class Arg1, class Arg2>
struct project2nd : public binary_function<Arg1, Arg2, Arg2> {
Arg2 operator()(const Arg1&, const Arg2& y) const { return y; }
};
template <class Result>
struct constant_void_fun
{
typedef Result result_type;
result_type val;
constant_void_fun(const result_type& v) : val(v) {}
const result_type& operator()() const { return val; }
};
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Result, class Argument = Result>
#else
template <class Result, class Argument>
#endif
struct constant_unary_fun : public unary_function<Argument, Result> {
result_type val;
constant_unary_fun(const result_type& v) : val(v) {}
const result_type& operator()(const argument_type&) const { return val; }
};
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Result, class Arg1 = Result, class Arg2 = Arg1>
#else
template <class Result, class Arg1, class Arg2>
#endif
struct constant_binary_fun : public binary_function<Arg1, Arg2, Result> {
result_type val;
constant_binary_fun(const result_type& v) : val(v) {}
const result_type& operator()(const first_argument_type&,
const second_argument_type&) const {
return val;
}
};
template <class Result>
inline constant_void_fun<Result> constant0(const Result& val)
{
return constant_void_fun<Result>(val);
}
template <class Result>
inline constant_unary_fun<Result,Result> constant1(const Result& val)
{
return constant_unary_fun<Result,Result>(val);
}
template <class Result>
inline constant_binary_fun<Result,Result,Result> constant2(const Result& val)
{
return constant_binary_fun<Result,Result,Result>(val);
}
// Note: this code assumes that int is 32 bits.
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
private:
unsigned int table[55];
size_t index1;
size_t index2;
public:
unsigned int operator()(unsigned int limit) {
index1 = (index1 + 1) % 55;
index2 = (index2 + 1) % 55;
table[index1] = table[index1] - table[index2];
return table[index1] % limit;
}
void initialize(unsigned int seed)
{
unsigned int k = 1;
table[54] = seed;
size_t i;
for (i = 0; i < 54; i++) {
size_t ii = (21 * (i + 1) % 55) - 1;
table[ii] = k;
k = seed - k;
seed = table[ii];
}
for (int loop = 0; loop < 4; loop++) {
for (i = 0; i < 55; i++)
table[i] = table[i] - table[(1 + i + 30) % 55];
}
index1 = 0;
index2 = 31;
}
subtractive_rng(unsigned int seed) { initialize(seed); }
subtractive_rng() { initialize(161803398u); }
};
// Adaptor function objects: pointers to member functions.
// There are a total of 16 = 2^4 function objects in this family.
// (1) Member functions taking no arguments vs member functions taking
// one argument.
// (2) Call through pointer vs call through reference.
// (3) Member function with void return type vs member function with
// non-void return type.
// (4) Const vs non-const member function.
// Note that choice (4) is not present in the 8/97 draft C++ standard,
// which only allows these adaptors to be used with non-const functions.
// This is likely to be recified before the standard becomes final.
// Note also that choice (3) is nothing more than a workaround: according
// to the draft, compilers should handle void and non-void the same way.
// This feature is not yet widely implemented, though. You can only use
// member functions returning void if your compiler supports partial
// specialization.
// All of this complexity is in the function objects themselves. You can
// ignore it by using the helper function mem_fun, mem_fun_ref,
// mem_fun1, and mem_fun1_ref, which create whichever type of adaptor
// is appropriate.
template <class S, class T>
class mem_fun_t : public unary_function<T*, S> {
public:
explicit mem_fun_t(S (T::*pf)()) : f(pf) {}
S operator()(T* p) const { return (p->*f)(); }
private:
S (T::*f)();
};
template <class S, class T>
class const_mem_fun_t : public unary_function<const T*, S> {
public:
explicit const_mem_fun_t(S (T::*pf)() const) : f(pf) {}
S operator()(const T* p) const { return (p->*f)(); }
private:
S (T::*f)() const;
};
template <class S, class T>
class mem_fun_ref_t : public unary_function<T, S> {
public:
explicit mem_fun_ref_t(S (T::*pf)()) : f(pf) {}
S operator()(T& r) const { return (r.*f)(); }
private:
S (T::*f)();
};
template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T, S> {
public:
explicit const_mem_fun_ref_t(S (T::*pf)() const) : f(pf) {}
S operator()(const T& r) const { return (r.*f)(); }
private:
S (T::*f)() const;
};
template <class S, class T, class A>
class mem_fun1_t : public binary_function<T*, A, S> {
public:
explicit mem_fun1_t(S (T::*pf)(A)) : f(pf) {}
S operator()(T* p, A x) const { return (p->*f)(x); }
private:
S (T::*f)(A);
};
template <class S, class T, class A>
class const_mem_fun1_t : public binary_function<const T*, A, S> {
public:
explicit const_mem_fun1_t(S (T::*pf)(A) const) : f(pf) {}
S operator()(const T* p, A x) const { return (p->*f)(x); }
private:
S (T::*f)(A) const;
};
template <class S, class T, class A>
class mem_fun1_ref_t : public binary_function<T, A, S> {
public:
explicit mem_fun1_ref_t(S (T::*pf)(A)) : f(pf) {}
S operator()(T& r, A x) const { return (r.*f)(x); }
private:
S (T::*f)(A);
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function<T, A, S> {
public:
explicit const_mem_fun1_ref_t(S (T::*pf)(A) const) : f(pf) {}
S operator()(const T& r, A x) const { return (r.*f)(x); }
private:
S (T::*f)(A) const;
};
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class T>
class mem_fun_t<void, T> : public unary_function<T*, void> {
public:
explicit mem_fun_t(void (T::*pf)()) : f(pf) {}
void operator()(T* p) const { (p->*f)(); }
private:
void (T::*f)();
};
template <class T>
class const_mem_fun_t<void, T> : public unary_function<const T*, void> {
public:
explicit const_mem_fun_t(void (T::*pf)() const) : f(pf) {}
void operator()(const T* p) const { (p->*f)(); }
private:
void (T::*f)() const;
};
template <class T>
class mem_fun_ref_t<void, T> : public unary_function<T, void> {
public:
explicit mem_fun_ref_t(void (T::*pf)()) : f(pf) {}
void operator()(T& r) const { (r.*f)(); }
private:
void (T::*f)();
};
template <class T>
class const_mem_fun_ref_t<void, T> : public unary_function<T, void> {
public:
explicit const_mem_fun_ref_t(void (T::*pf)() const) : f(pf) {}
void operator()(const T& r) const { (r.*f)(); }
private:
void (T::*f)() const;
};
template <class T, class A>
class mem_fun1_t<void, T, A> : public binary_function<T*, A, void> {
public:
explicit mem_fun1_t(void (T::*pf)(A)) : f(pf) {}
void operator()(T* p, A x) const { (p->*f)(x); }
private:
void (T::*f)(A);
};
template <class T, class A>
class const_mem_fun1_t<void, T, A> : public binary_function<const T*, A, void> {
public:
explicit const_mem_fun1_t(void (T::*pf)(A) const) : f(pf) {}
void operator()(const T* p, A x) const { (p->*f)(x); }
private:
void (T::*f)(A) const;
};
template <class T, class A>
class mem_fun1_ref_t<void, T, A> : public binary_function<T, A, void> {
public:
explicit mem_fun1_ref_t(void (T::*pf)(A)) : f(pf) {}
void operator()(T& r, A x) const { (r.*f)(x); }
private:
void (T::*f)(A);
};
template <class T, class A>
class const_mem_fun1_ref_t<void, T, A> : public binary_function<T, A, void> {
public:
explicit const_mem_fun1_ref_t(void (T::*pf)(A) const) : f(pf) {}
void operator()(const T& r, A x) const { (r.*f)(x); }
private:
void (T::*f)(A) const;
};
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// Mem_fun adaptor helper functions. There are only four:
// mem_fun, mem_fun_ref, mem_fun1, mem_fun1_ref.
template <class S, class T>
inline mem_fun_t<S,T> mem_fun(S (T::*f)()) {
return mem_fun_t<S,T>(f);
}
template <class S, class T>
inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const) {
return const_mem_fun_t<S,T>(f);
}
template <class S, class T>
inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)()) {
return mem_fun_ref_t<S,T>(f);
}
template <class S, class T>
inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const) {
return const_mem_fun_ref_t<S,T>(f);
}
template <class S, class T, class A>
inline mem_fun1_t<S,T,A> mem_fun1(S (T::*f)(A)) {
return mem_fun1_t<S,T,A>(f);
}
template <class S, class T, class A>
inline const_mem_fun1_t<S,T,A> mem_fun1(S (T::*f)(A) const) {
return const_mem_fun1_t<S,T,A>(f);
}
template <class S, class T, class A>
inline mem_fun1_ref_t<S,T,A> mem_fun1_ref(S (T::*f)(A)) {
return mem_fun1_ref_t<S,T,A>(f);
}
template <class S, class T, class A>
inline const_mem_fun1_ref_t<S,T,A> mem_fun1_ref(S (T::*f)(A) const) {
return const_mem_fun1_ref_t<S,T,A>(f);
}
#endif /* __SGI_STL_FUNCTION_H */