mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-13 07:24:27 +08:00
348 lines
9.6 KiB
Plaintext
348 lines
9.6 KiB
Plaintext
|
/*
|
||
|
* Copyright (c) 1996
|
||
|
* Silicon Graphics Computer Systems, Inc.
|
||
|
*
|
||
|
* Permission to use, copy, modify, distribute and sell this software
|
||
|
* and its documentation for any purpose is hereby granted without fee,
|
||
|
* provided that the above copyright notice appear in all copies and
|
||
|
* that both that copyright notice and this permission notice appear
|
||
|
* in supporting documentation. Silicon Graphics makes no
|
||
|
* representations about the suitability of this software for any
|
||
|
* purpose. It is provided "as is" without express or implied warranty.
|
||
|
*/
|
||
|
|
||
|
#ifndef __SGI_STL_PTHREAD_ALLOC
|
||
|
#define __SGI_STL_PTHREAD_ALLOC
|
||
|
|
||
|
// Pthread-specific node allocator.
|
||
|
// This is similar to the default allocator, except that free-list
|
||
|
// information is kept separately for each thread, avoiding locking.
|
||
|
// This should be reasonably fast even in the presence of threads.
|
||
|
// The down side is that storage may not be well-utilized.
|
||
|
// It is not an error to allocate memory in thread A and deallocate
|
||
|
// it n thread B. But this effectively transfers ownership of the memory,
|
||
|
// so that it can only be reallocated by thread B. Thus this can effectively
|
||
|
// result in a storage leak if it's done on a regular basis.
|
||
|
// It can also result in frequent sharing of
|
||
|
// cache lines among processors, with potentially serious performance
|
||
|
// consequences.
|
||
|
|
||
|
#include <stl_config.h>
|
||
|
#include <stl_alloc.h>
|
||
|
#ifndef __RESTRICT
|
||
|
# define __RESTRICT
|
||
|
#endif
|
||
|
|
||
|
__STL_BEGIN_NAMESPACE
|
||
|
|
||
|
// Note that this class has nonstatic members. We instantiate it once
|
||
|
// per thread.
|
||
|
template <bool dummy>
|
||
|
class __pthread_alloc_template {
|
||
|
|
||
|
private:
|
||
|
enum {ALIGN = 8};
|
||
|
enum {MAX_BYTES = 128}; // power of 2
|
||
|
enum {NFREELISTS = MAX_BYTES/ALIGN};
|
||
|
|
||
|
union obj {
|
||
|
union obj * free_list_link;
|
||
|
char client_data[ALIGN]; /* The client sees this. */
|
||
|
};
|
||
|
|
||
|
// Per instance state
|
||
|
obj* volatile free_list[NFREELISTS];
|
||
|
__pthread_alloc_template<dummy>* next; // Free list link
|
||
|
|
||
|
static size_t ROUND_UP(size_t bytes) {
|
||
|
return (((bytes) + ALIGN-1) & ~(ALIGN - 1));
|
||
|
}
|
||
|
static size_t FREELIST_INDEX(size_t bytes) {
|
||
|
return (((bytes) + ALIGN-1)/ALIGN - 1);
|
||
|
}
|
||
|
|
||
|
// Returns an object of size n, and optionally adds to size n free list.
|
||
|
void *refill(size_t n);
|
||
|
// Allocates a chunk for nobjs of size size. nobjs may be reduced
|
||
|
// if it is inconvenient to allocate the requested number.
|
||
|
static char *chunk_alloc(size_t size, int &nobjs);
|
||
|
|
||
|
// Chunk allocation state. And other shared state.
|
||
|
// Protected by chunk_allocator_lock.
|
||
|
static pthread_mutex_t chunk_allocator_lock;
|
||
|
static char *start_free;
|
||
|
static char *end_free;
|
||
|
static size_t heap_size;
|
||
|
static __pthread_alloc_template<dummy>* free_allocators;
|
||
|
static pthread_key_t key;
|
||
|
static bool key_initialized;
|
||
|
// Pthread key under which allocator is stored.
|
||
|
// Allocator instances that are currently unclaimed by any thread.
|
||
|
static void destructor(void *instance);
|
||
|
// Function to be called on thread exit to reclaim allocator
|
||
|
// instance.
|
||
|
static __pthread_alloc_template<dummy> *new_allocator();
|
||
|
// Return a recycled or new allocator instance.
|
||
|
static __pthread_alloc_template<dummy> *get_allocator_instance();
|
||
|
// ensure that the current thread has an associated
|
||
|
// allocator instance.
|
||
|
class lock {
|
||
|
public:
|
||
|
lock () { pthread_mutex_lock(&chunk_allocator_lock); }
|
||
|
~lock () { pthread_mutex_unlock(&chunk_allocator_lock); }
|
||
|
};
|
||
|
friend class lock;
|
||
|
|
||
|
|
||
|
public:
|
||
|
|
||
|
__pthread_alloc_template() : next(0)
|
||
|
{
|
||
|
memset((void *)free_list, 0, NFREELISTS * sizeof(obj *));
|
||
|
}
|
||
|
|
||
|
/* n must be > 0 */
|
||
|
static void * allocate(size_t n)
|
||
|
{
|
||
|
obj * volatile * my_free_list;
|
||
|
obj * __RESTRICT result;
|
||
|
__pthread_alloc_template<dummy>* a;
|
||
|
|
||
|
if (n > MAX_BYTES) {
|
||
|
return(malloc(n));
|
||
|
}
|
||
|
if (!key_initialized ||
|
||
|
!(a = (__pthread_alloc_template<dummy>*)
|
||
|
pthread_getspecific(key))) {
|
||
|
a = get_allocator_instance();
|
||
|
}
|
||
|
my_free_list = a -> free_list + FREELIST_INDEX(n);
|
||
|
result = *my_free_list;
|
||
|
if (result == 0) {
|
||
|
void *r = a -> refill(ROUND_UP(n));
|
||
|
return r;
|
||
|
}
|
||
|
*my_free_list = result -> free_list_link;
|
||
|
return (result);
|
||
|
};
|
||
|
|
||
|
/* p may not be 0 */
|
||
|
static void deallocate(void *p, size_t n)
|
||
|
{
|
||
|
obj *q = (obj *)p;
|
||
|
obj * volatile * my_free_list;
|
||
|
__pthread_alloc_template<dummy>* a;
|
||
|
|
||
|
if (n > MAX_BYTES) {
|
||
|
free(p);
|
||
|
return;
|
||
|
}
|
||
|
if (!key_initialized ||
|
||
|
!(a = (__pthread_alloc_template<dummy>*)
|
||
|
pthread_getspecific(key))) {
|
||
|
a = get_allocator_instance();
|
||
|
}
|
||
|
my_free_list = a->free_list + FREELIST_INDEX(n);
|
||
|
q -> free_list_link = *my_free_list;
|
||
|
*my_free_list = q;
|
||
|
}
|
||
|
|
||
|
static void * reallocate(void *p, size_t old_sz, size_t new_sz);
|
||
|
|
||
|
} ;
|
||
|
|
||
|
typedef __pthread_alloc_template<false> pthread_alloc;
|
||
|
|
||
|
|
||
|
template <bool dummy>
|
||
|
void __pthread_alloc_template<dummy>::destructor(void * instance)
|
||
|
{
|
||
|
__pthread_alloc_template<dummy>* a =
|
||
|
(__pthread_alloc_template<dummy>*)instance;
|
||
|
a -> next = free_allocators;
|
||
|
free_allocators = a;
|
||
|
}
|
||
|
|
||
|
template <bool dummy>
|
||
|
__pthread_alloc_template<dummy>*
|
||
|
__pthread_alloc_template<dummy>::new_allocator()
|
||
|
{
|
||
|
if (0 != free_allocators) {
|
||
|
__pthread_alloc_template<dummy>* result = free_allocators;
|
||
|
free_allocators = free_allocators -> next;
|
||
|
return result;
|
||
|
} else {
|
||
|
return new __pthread_alloc_template<dummy>;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <bool dummy>
|
||
|
__pthread_alloc_template<dummy>*
|
||
|
__pthread_alloc_template<dummy>::get_allocator_instance()
|
||
|
{
|
||
|
__pthread_alloc_template<dummy>* result;
|
||
|
if (!key_initialized) {
|
||
|
/*REFERENCED*/
|
||
|
lock lock_instance;
|
||
|
if (!key_initialized) {
|
||
|
if (pthread_key_create(&key, destructor)) {
|
||
|
abort(); // failed
|
||
|
}
|
||
|
key_initialized = true;
|
||
|
}
|
||
|
}
|
||
|
result = new_allocator();
|
||
|
if (pthread_setspecific(key, result)) abort();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/* We allocate memory in large chunks in order to avoid fragmenting */
|
||
|
/* the malloc heap too much. */
|
||
|
/* We assume that size is properly aligned. */
|
||
|
template <bool dummy>
|
||
|
char *__pthread_alloc_template<dummy>
|
||
|
::chunk_alloc(size_t size, int &nobjs)
|
||
|
{
|
||
|
{
|
||
|
char * result;
|
||
|
size_t total_bytes;
|
||
|
size_t bytes_left;
|
||
|
/*REFERENCED*/
|
||
|
lock lock_instance; // Acquire lock for this routine
|
||
|
|
||
|
total_bytes = size * nobjs;
|
||
|
bytes_left = end_free - start_free;
|
||
|
if (bytes_left >= total_bytes) {
|
||
|
result = start_free;
|
||
|
start_free += total_bytes;
|
||
|
return(result);
|
||
|
} else if (bytes_left >= size) {
|
||
|
nobjs = bytes_left/size;
|
||
|
total_bytes = size * nobjs;
|
||
|
result = start_free;
|
||
|
start_free += total_bytes;
|
||
|
return(result);
|
||
|
} else {
|
||
|
size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
|
||
|
// Try to make use of the left-over piece.
|
||
|
if (bytes_left > 0) {
|
||
|
__pthread_alloc_template<dummy>* a =
|
||
|
(__pthread_alloc_template<dummy>*)pthread_getspecific(key);
|
||
|
obj * volatile * my_free_list =
|
||
|
a->free_list + FREELIST_INDEX(bytes_left);
|
||
|
|
||
|
((obj *)start_free) -> free_list_link = *my_free_list;
|
||
|
*my_free_list = (obj *)start_free;
|
||
|
}
|
||
|
# ifdef _SGI_SOURCE
|
||
|
// Try to get memory that's aligned on something like a
|
||
|
// cache line boundary, so as to avoid parceling out
|
||
|
// parts of the same line to different threads and thus
|
||
|
// possibly different processors.
|
||
|
{
|
||
|
const int cache_line_size = 128; // probable upper bound
|
||
|
bytes_to_get &= ~(cache_line_size-1);
|
||
|
start_free = (char *)memalign(cache_line_size, bytes_to_get);
|
||
|
if (0 == start_free) {
|
||
|
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
|
||
|
}
|
||
|
}
|
||
|
# else /* !SGI_SOURCE */
|
||
|
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
|
||
|
# endif
|
||
|
heap_size += bytes_to_get;
|
||
|
end_free = start_free + bytes_to_get;
|
||
|
}
|
||
|
}
|
||
|
// lock is released here
|
||
|
return(chunk_alloc(size, nobjs));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Returns an object of size n, and optionally adds to size n free list.*/
|
||
|
/* We assume that n is properly aligned. */
|
||
|
/* We hold the allocation lock. */
|
||
|
template <bool dummy>
|
||
|
void *__pthread_alloc_template<dummy>
|
||
|
::refill(size_t n)
|
||
|
{
|
||
|
int nobjs = 128;
|
||
|
char * chunk = chunk_alloc(n, nobjs);
|
||
|
obj * volatile * my_free_list;
|
||
|
obj * result;
|
||
|
obj * current_obj, * next_obj;
|
||
|
int i;
|
||
|
|
||
|
if (1 == nobjs) {
|
||
|
return(chunk);
|
||
|
}
|
||
|
my_free_list = free_list + FREELIST_INDEX(n);
|
||
|
|
||
|
/* Build free list in chunk */
|
||
|
result = (obj *)chunk;
|
||
|
*my_free_list = next_obj = (obj *)(chunk + n);
|
||
|
for (i = 1; ; i++) {
|
||
|
current_obj = next_obj;
|
||
|
next_obj = (obj *)((char *)next_obj + n);
|
||
|
if (nobjs - 1 == i) {
|
||
|
current_obj -> free_list_link = 0;
|
||
|
break;
|
||
|
} else {
|
||
|
current_obj -> free_list_link = next_obj;
|
||
|
}
|
||
|
}
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
template <bool dummy>
|
||
|
void *__pthread_alloc_template<dummy>
|
||
|
::reallocate(void *p, size_t old_sz, size_t new_sz)
|
||
|
{
|
||
|
void * result;
|
||
|
size_t copy_sz;
|
||
|
|
||
|
if (old_sz > MAX_BYTES && new_sz > MAX_BYTES) {
|
||
|
return(realloc(p, new_sz));
|
||
|
}
|
||
|
if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
|
||
|
result = allocate(new_sz);
|
||
|
copy_sz = new_sz > old_sz? old_sz : new_sz;
|
||
|
memcpy(result, p, copy_sz);
|
||
|
deallocate(p, old_sz);
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
template <bool dummy>
|
||
|
__pthread_alloc_template<dummy> *
|
||
|
__pthread_alloc_template<dummy>::free_allocators = 0;
|
||
|
|
||
|
template <bool dummy>
|
||
|
pthread_key_t __pthread_alloc_template<dummy>::key;
|
||
|
|
||
|
template <bool dummy>
|
||
|
bool __pthread_alloc_template<dummy>::key_initialized = false;
|
||
|
|
||
|
template <bool dummy>
|
||
|
pthread_mutex_t __pthread_alloc_template<dummy>::chunk_allocator_lock
|
||
|
= PTHREAD_MUTEX_INITIALIZER;
|
||
|
|
||
|
template <bool dummy>
|
||
|
char *__pthread_alloc_template<dummy>
|
||
|
::start_free = 0;
|
||
|
|
||
|
template <bool dummy>
|
||
|
char *__pthread_alloc_template<dummy>
|
||
|
::end_free = 0;
|
||
|
|
||
|
template <bool dummy>
|
||
|
size_t __pthread_alloc_template<dummy>
|
||
|
::heap_size = 0;
|
||
|
|
||
|
__STL_END_NAMESPACE
|
||
|
|
||
|
#endif /* __SGI_STL_PTHREAD_ALLOC */
|
||
|
|
||
|
// Local Variables:
|
||
|
// mode:C++
|
||
|
// End:
|