mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
177 lines
4.6 KiB
C++
177 lines
4.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
|
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LevenbergMarquardt>
|
|
|
|
using namespace std;
|
|
using namespace Eigen;
|
|
|
|
template <typename Scalar>
|
|
struct sparseGaussianTest : SparseFunctor<Scalar, int>
|
|
{
|
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|
typedef SparseFunctor<Scalar,int> Base;
|
|
typedef typename Base::JacobianType JacobianType;
|
|
sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
|
|
{ }
|
|
|
|
VectorType model(const VectorType& uv, VectorType& x)
|
|
{
|
|
VectorType y; //Change this to use expression template
|
|
int m = Base::values();
|
|
int n = Base::inputs();
|
|
eigen_assert(uv.size()%2 == 0);
|
|
eigen_assert(uv.size() == n);
|
|
eigen_assert(x.size() == m);
|
|
y.setZero(m);
|
|
int half = n/2;
|
|
VectorBlock<const VectorType> u(uv, 0, half);
|
|
VectorBlock<const VectorType> v(uv, half, half);
|
|
Scalar coeff;
|
|
for (int j = 0; j < m; j++)
|
|
{
|
|
for (int i = 0; i < half; i++)
|
|
{
|
|
coeff = (x(j)-i)/v(i);
|
|
coeff *= coeff;
|
|
if (coeff < 1. && coeff > 0.)
|
|
y(j) += u(i)*std::pow((1-coeff), 2);
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
void initPoints(VectorType& uv_ref, VectorType& x)
|
|
{
|
|
m_x = x;
|
|
m_y = this->model(uv_ref,x);
|
|
}
|
|
int operator()(const VectorType& uv, VectorType& fvec)
|
|
{
|
|
int m = Base::values();
|
|
int n = Base::inputs();
|
|
eigen_assert(uv.size()%2 == 0);
|
|
eigen_assert(uv.size() == n);
|
|
int half = n/2;
|
|
VectorBlock<const VectorType> u(uv, 0, half);
|
|
VectorBlock<const VectorType> v(uv, half, half);
|
|
fvec = m_y;
|
|
Scalar coeff;
|
|
for (int j = 0; j < m; j++)
|
|
{
|
|
for (int i = 0; i < half; i++)
|
|
{
|
|
coeff = (m_x(j)-i)/v(i);
|
|
coeff *= coeff;
|
|
if (coeff < 1. && coeff > 0.)
|
|
fvec(j) -= u(i)*std::pow((1-coeff), 2);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int df(const VectorType& uv, JacobianType& fjac)
|
|
{
|
|
int m = Base::values();
|
|
int n = Base::inputs();
|
|
eigen_assert(n == uv.size());
|
|
eigen_assert(fjac.rows() == m);
|
|
eigen_assert(fjac.cols() == n);
|
|
int half = n/2;
|
|
VectorBlock<const VectorType> u(uv, 0, half);
|
|
VectorBlock<const VectorType> v(uv, half, half);
|
|
Scalar coeff;
|
|
|
|
//Derivatives with respect to u
|
|
for (int col = 0; col < half; col++)
|
|
{
|
|
for (int row = 0; row < m; row++)
|
|
{
|
|
coeff = (m_x(row)-col)/v(col);
|
|
coeff = coeff*coeff;
|
|
if(coeff < 1. && coeff > 0.)
|
|
{
|
|
fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
|
|
}
|
|
}
|
|
}
|
|
//Derivatives with respect to v
|
|
for (int col = 0; col < half; col++)
|
|
{
|
|
for (int row = 0; row < m; row++)
|
|
{
|
|
coeff = (m_x(row)-col)/v(col);
|
|
coeff = coeff*coeff;
|
|
if(coeff < 1. && coeff > 0.)
|
|
{
|
|
fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
VectorType m_x, m_y; //Data points
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
void test_sparseLM_T()
|
|
{
|
|
typedef Matrix<T,Dynamic,1> VectorType;
|
|
|
|
int inputs = 10;
|
|
int values = 2000;
|
|
sparseGaussianTest<T> sparse_gaussian(inputs, values);
|
|
VectorType uv(inputs),uv_ref(inputs);
|
|
VectorType x(values);
|
|
// Generate the reference solution
|
|
uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
|
|
//Generate the reference data points
|
|
x.setRandom();
|
|
x = 10*x;
|
|
x.array() += 10;
|
|
sparse_gaussian.initPoints(uv_ref, x);
|
|
|
|
|
|
// Generate the initial parameters
|
|
VectorBlock<VectorType> u(uv, 0, inputs/2);
|
|
VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
|
|
v.setOnes();
|
|
//Generate u or Solve for u from v
|
|
u.setOnes();
|
|
|
|
// Solve the optimization problem
|
|
LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
|
|
int info;
|
|
// info = lm.minimize(uv);
|
|
|
|
VERIFY_IS_EQUAL(info,1);
|
|
// Do a step by step solution and save the residual
|
|
int maxiter = 200;
|
|
int iter = 0;
|
|
MatrixXd Err(values, maxiter);
|
|
MatrixXd Mod(values, maxiter);
|
|
LevenbergMarquardtSpace::Status status;
|
|
status = lm.minimizeInit(uv);
|
|
if (status==LevenbergMarquardtSpace::ImproperInputParameters)
|
|
return ;
|
|
|
|
}
|
|
EIGEN_DECLARE_TEST(sparseLM)
|
|
{
|
|
CALL_SUBTEST_1(test_sparseLM_T<double>());
|
|
|
|
// CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
|
}
|