mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
233 lines
8.6 KiB
C++
233 lines
8.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 20013 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR
|
|
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
|
|
#undef EIGEN_DEFAULT_TO_ROW_MAJOR
|
|
#endif
|
|
|
|
static int nb_temporaries;
|
|
|
|
inline void on_temporary_creation(int) {
|
|
// here's a great place to set a breakpoint when debugging failures in this test!
|
|
nb_temporaries++;
|
|
}
|
|
|
|
|
|
#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }
|
|
|
|
#include "main.h"
|
|
|
|
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
|
|
nb_temporaries = 0; \
|
|
XPR; \
|
|
if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
|
|
VERIFY( (#XPR) && nb_temporaries==N ); \
|
|
}
|
|
|
|
|
|
// test Ref.h
|
|
|
|
template<typename MatrixType> void ref_matrix(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Matrix<Scalar,Dynamic,Dynamic,MatrixType::Options> DynMatrixType;
|
|
typedef Matrix<RealScalar,Dynamic,Dynamic,MatrixType::Options> RealDynMatrixType;
|
|
|
|
typedef Ref<MatrixType> RefMat;
|
|
typedef Ref<DynMatrixType> RefDynMat;
|
|
typedef Ref<const DynMatrixType> ConstRefDynMat;
|
|
typedef Ref<RealDynMatrixType , 0, Stride<Dynamic,Dynamic> > RefRealMatWithStride;
|
|
|
|
Index rows = m.rows(), cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = m1;
|
|
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
Index j = internal::random<Index>(0,cols-1);
|
|
Index brows = internal::random<Index>(1,rows-i);
|
|
Index bcols = internal::random<Index>(1,cols-j);
|
|
|
|
RefMat rm0 = m1;
|
|
VERIFY_IS_EQUAL(rm0, m1);
|
|
RefDynMat rm1 = m1;
|
|
VERIFY_IS_EQUAL(rm1, m1);
|
|
RefDynMat rm2 = m1.block(i,j,brows,bcols);
|
|
VERIFY_IS_EQUAL(rm2, m1.block(i,j,brows,bcols));
|
|
rm2.setOnes();
|
|
m2.block(i,j,brows,bcols).setOnes();
|
|
VERIFY_IS_EQUAL(m1, m2);
|
|
|
|
m2.block(i,j,brows,bcols).setRandom();
|
|
rm2 = m2.block(i,j,brows,bcols);
|
|
VERIFY_IS_EQUAL(m1, m2);
|
|
|
|
|
|
ConstRefDynMat rm3 = m1.block(i,j,brows,bcols);
|
|
m1.block(i,j,brows,bcols) *= 2;
|
|
m2.block(i,j,brows,bcols) *= 2;
|
|
VERIFY_IS_EQUAL(rm3, m2.block(i,j,brows,bcols));
|
|
RefRealMatWithStride rm4 = m1.real();
|
|
VERIFY_IS_EQUAL(rm4, m2.real());
|
|
rm4.array() += 1;
|
|
m2.real().array() += 1;
|
|
VERIFY_IS_EQUAL(m1, m2);
|
|
}
|
|
|
|
template<typename VectorType> void ref_vector(const VectorType& m)
|
|
{
|
|
typedef typename VectorType::Index Index;
|
|
typedef typename VectorType::Scalar Scalar;
|
|
typedef typename VectorType::RealScalar RealScalar;
|
|
typedef Matrix<Scalar,Dynamic,1,VectorType::Options> DynMatrixType;
|
|
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixType;
|
|
typedef Matrix<RealScalar,Dynamic,1,VectorType::Options> RealDynMatrixType;
|
|
|
|
typedef Ref<VectorType> RefMat;
|
|
typedef Ref<DynMatrixType> RefDynMat;
|
|
typedef Ref<const DynMatrixType> ConstRefDynMat;
|
|
typedef Ref<RealDynMatrixType , 0, InnerStride<> > RefRealMatWithStride;
|
|
typedef Ref<DynMatrixType , 0, InnerStride<> > RefMatWithStride;
|
|
|
|
Index size = m.size();
|
|
|
|
VectorType v1 = VectorType::Random(size),
|
|
v2 = v1;
|
|
MatrixType mat1 = MatrixType::Random(size,size),
|
|
mat2 = mat1,
|
|
mat3 = MatrixType::Random(size,size);
|
|
|
|
Index i = internal::random<Index>(0,size-1);
|
|
Index bsize = internal::random<Index>(1,size-i);
|
|
|
|
RefMat rm0 = v1;
|
|
VERIFY_IS_EQUAL(rm0, v1);
|
|
RefDynMat rv1 = v1;
|
|
VERIFY_IS_EQUAL(rv1, v1);
|
|
RefDynMat rv2 = v1.segment(i,bsize);
|
|
VERIFY_IS_EQUAL(rv2, v1.segment(i,bsize));
|
|
rv2.setOnes();
|
|
v2.segment(i,bsize).setOnes();
|
|
VERIFY_IS_EQUAL(v1, v2);
|
|
|
|
v2.segment(i,bsize).setRandom();
|
|
rv2 = v2.segment(i,bsize);
|
|
VERIFY_IS_EQUAL(v1, v2);
|
|
|
|
ConstRefDynMat rm3 = v1.segment(i,bsize);
|
|
v1.segment(i,bsize) *= 2;
|
|
v2.segment(i,bsize) *= 2;
|
|
VERIFY_IS_EQUAL(rm3, v2.segment(i,bsize));
|
|
|
|
RefRealMatWithStride rm4 = v1.real();
|
|
VERIFY_IS_EQUAL(rm4, v2.real());
|
|
rm4.array() += 1;
|
|
v2.real().array() += 1;
|
|
VERIFY_IS_EQUAL(v1, v2);
|
|
|
|
RefMatWithStride rm5 = mat1.row(i).transpose();
|
|
VERIFY_IS_EQUAL(rm5, mat1.row(i).transpose());
|
|
rm5.array() += 1;
|
|
mat2.row(i).array() += 1;
|
|
VERIFY_IS_EQUAL(mat1, mat2);
|
|
rm5.noalias() = rm4.transpose() * mat3;
|
|
mat2.row(i) = v2.real().transpose() * mat3;
|
|
VERIFY_IS_APPROX(mat1, mat2);
|
|
}
|
|
|
|
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
|
|
{
|
|
// verify that ref-to-const don't have LvalueBit
|
|
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
|
|
VERIFY( !(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit) );
|
|
VERIFY( !(internal::traits<Ref<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
|
|
VERIFY( !(Ref<ConstPlainObjectType>::Flags & LvalueBit) );
|
|
VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
|
|
}
|
|
|
|
EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> ) { }
|
|
EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& ) { }
|
|
EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > ) { }
|
|
EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& ) { }
|
|
EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > ) { }
|
|
EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& ) { }
|
|
|
|
void call_ref()
|
|
{
|
|
VectorXcf ca(10);
|
|
VectorXf a(10);
|
|
const VectorXf& ac(a);
|
|
VectorBlock<VectorXf> ab(a,0,3);
|
|
MatrixXf A(10,10);
|
|
const VectorBlock<VectorXf> abc(a,0,3);
|
|
|
|
VERIFY_EVALUATION_COUNT( call_ref_1(a), 0);
|
|
//call_ref_1(ac); // does not compile because ac is const
|
|
VERIFY_EVALUATION_COUNT( call_ref_1(ab), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_1(abc), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3)), 0);
|
|
// call_ref_1(A.row(3)); // does not compile because innerstride!=1
|
|
VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3)), 0);
|
|
//call_ref_1(a+a); // does not compile for obvious reason
|
|
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1)), 1); // evaluated into a temp
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(ac), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(a), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(ab), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(a+a), 1); // evaluated into a temp
|
|
VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag()), 1); // evaluated into a temp
|
|
|
|
VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_4(a+a), 1); // evaluated into a temp
|
|
VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag()), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( call_ref_5(a), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_5(A), 0);
|
|
// call_ref_5(A.transpose()); // does not compile
|
|
VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2)), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(a), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3)), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(A+A), 1); // evaluated into a temp
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(A), 0);
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose()), 1); // evaluated into a temp because the storage orders do not match
|
|
VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2)), 0);
|
|
}
|
|
|
|
void test_ref()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( ref_vector(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( ref_vector(Vector4d()) );
|
|
CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
|
|
CALL_SUBTEST_3( ref_vector(Vector4cf()) );
|
|
CALL_SUBTEST_4( ref_vector(VectorXcf(8)) );
|
|
CALL_SUBTEST_5( ref_vector(VectorXi(12)) );
|
|
CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );
|
|
|
|
CALL_SUBTEST_1( ref_matrix(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( ref_matrix(Matrix4d()) );
|
|
CALL_SUBTEST_1( ref_matrix(Matrix<float,3,5>()) );
|
|
CALL_SUBTEST_4( ref_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
|
|
CALL_SUBTEST_4( ref_matrix(Matrix<std::complex<double>,10,15>()) );
|
|
CALL_SUBTEST_5( ref_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
|
|
CALL_SUBTEST_6( call_ref() );
|
|
}
|
|
}
|