mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
181 lines
9.0 KiB
Plaintext
181 lines
9.0 KiB
Plaintext
#ifndef EIGEN_COMPLEX_H
|
|
#define EIGEN_COMPLEX_H
|
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Eigen::Complex reuses as much as possible from std::complex
|
|
// and allows easy conversion to and from, even at the pointer level.
|
|
|
|
|
|
#include <complex>
|
|
|
|
namespace Eigen {
|
|
|
|
template <typename _NativePtr,typename _PunnedPtr>
|
|
struct castable_pointer
|
|
{
|
|
castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
|
|
operator _NativePtr () {return _ptr;}
|
|
operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
|
|
private:
|
|
_NativePtr _ptr;
|
|
};
|
|
|
|
template <typename T>
|
|
struct Complex
|
|
{
|
|
typedef typename std::complex<T> StandardComplex;
|
|
typedef T value_type;
|
|
|
|
// constructors
|
|
Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
|
|
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
|
|
|
|
template<class X>
|
|
Complex(const Complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
|
template<class X>
|
|
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
|
|
|
|
|
// allow binary access to the object as a std::complex
|
|
typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
|
|
typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
|
|
pointer_type operator & () {return pointer_type(this);}
|
|
const_pointer_type operator & () const {return const_pointer_type(this);}
|
|
|
|
operator StandardComplex () const {return std_type();}
|
|
operator StandardComplex & () {return std_type();}
|
|
|
|
StandardComplex std_type() const {return StandardComplex(real(),imag());}
|
|
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
|
|
|
|
|
|
// every sort of accessor and mutator that has ever been in fashion.
|
|
// For a brief history, search for "std::complex over-encapsulated"
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
|
|
const T & real() const {return _re;}
|
|
const T & imag() const {return _im;}
|
|
T & real() {return _re;}
|
|
T & imag() {return _im;}
|
|
T & real(const T & x) {return _re=x;}
|
|
T & imag(const T & x) {return _im=x;}
|
|
void set_real(const T & x) {_re = x;}
|
|
void set_imag(const T & x) {_im = x;}
|
|
|
|
// *** complex member functions: ***
|
|
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
|
|
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
|
|
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
|
|
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
|
|
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
|
|
|
|
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
|
|
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
|
|
|
|
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
|
|
template<class X> Complex<T>& operator+= (const Complex<X>& rhs) { _re+=rhs._re;_im+=rhs._im;return *this;}
|
|
template<class X> Complex<T>& operator-= (const Complex<X>& rhs) { _re-=rhs._re;_im-=rhs._im;return *this;}
|
|
template<class X> Complex<T>& operator*= (const Complex<X>& rhs) { this->std_type() *= rhs.std_type(); return *this; }
|
|
template<class X> Complex<T>& operator/= (const Complex<X>& rhs) { this->std_type() /= rhs.std_type(); return *this; }
|
|
|
|
private:
|
|
T _re;
|
|
T _im;
|
|
};
|
|
|
|
template <typename T>
|
|
T ei_to_std( const T & x) {return x;}
|
|
|
|
template <typename T>
|
|
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
|
|
|
|
// 26.2.6 operators
|
|
template<class T> Complex<T> operator+(const Complex<T>& rhs) {return rhs;}
|
|
template<class T> Complex<T> operator-(const Complex<T>& rhs) {return -ei_to_std(rhs);}
|
|
|
|
template<class T> Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) + ei_to_std(rhs);}
|
|
template<class T> Complex<T> operator-(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) - ei_to_std(rhs);}
|
|
template<class T> Complex<T> operator*(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) * ei_to_std(rhs);}
|
|
template<class T> Complex<T> operator/(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) / ei_to_std(rhs);}
|
|
template<class T> bool operator==(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) == ei_to_std(rhs);}
|
|
template<class T> bool operator!=(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) != ei_to_std(rhs);}
|
|
|
|
template<class T> Complex<T> operator+(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
|
|
template<class T> Complex<T> operator-(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
|
|
template<class T> Complex<T> operator*(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
|
|
template<class T> Complex<T> operator/(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
|
|
template<class T> bool operator==(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
|
|
template<class T> bool operator!=(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
|
|
|
|
template<class T> Complex<T> operator+(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
|
|
template<class T> Complex<T> operator-(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
|
|
template<class T> Complex<T> operator*(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
|
|
template<class T> Complex<T> operator/(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
|
|
template<class T> bool operator==(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
|
|
template<class T> bool operator!=(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
|
|
|
|
template<class T, class charT, class traits>
|
|
std::basic_istream<charT,traits>&
|
|
operator>> (std::basic_istream<charT,traits>& istr, Complex<T>& rhs)
|
|
{
|
|
return istr >> rhs.std_type();
|
|
}
|
|
|
|
template<class T, class charT, class traits>
|
|
std::basic_ostream<charT,traits>&
|
|
operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
|
|
{
|
|
return ostr << rhs.std_type();
|
|
}
|
|
|
|
// 26.2.7 values:
|
|
template<class T> T real(const Complex<T>&x) {return real(ei_to_std(x));}
|
|
template<class T> T abs(const Complex<T>&x) {return abs(ei_to_std(x));}
|
|
template<class T> T arg(const Complex<T>&x) {return arg(ei_to_std(x));}
|
|
template<class T> T norm(const Complex<T>&x) {return norm(ei_to_std(x));}
|
|
|
|
template<class T> Complex<T> conj(const Complex<T>&x) { return conj(ei_to_std(x));}
|
|
template<class T> Complex<T> polar(const T& x, const T&y) {return polar(ei_to_std(x),ei_to_std(y));}
|
|
// 26.2.8 transcendentals:
|
|
template<class T> Complex<T> cos (const Complex<T>&x){return cos(ei_to_std(x));}
|
|
template<class T> Complex<T> cosh (const Complex<T>&x){return cosh(ei_to_std(x));}
|
|
template<class T> Complex<T> exp (const Complex<T>&x){return exp(ei_to_std(x));}
|
|
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
|
|
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
|
|
|
|
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
|
|
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
|
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
|
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
|
|
|
template<class T> Complex<T> sin (const Complex<T>&x){return sin(ei_to_std(x));}
|
|
template<class T> Complex<T> sinh (const Complex<T>&x){return sinh(ei_to_std(x));}
|
|
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
|
|
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
|
|
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
|
|
}
|
|
|
|
#endif
|