mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
facdec5aa7
- In particular refactor the i0e and i1e code so scalar and vectorized path share code. - Move chebevl to GenericPacketMathFunctions. A brief benchmark with building Eigen with FMA, AVX and AVX2 flags Before: CPU: Intel Haswell with HyperThreading (6 cores) Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- BM_eigen_i0e_double/1 57.3 57.3 10000000 BM_eigen_i0e_double/8 398 398 1748554 BM_eigen_i0e_double/64 3184 3184 218961 BM_eigen_i0e_double/512 25579 25579 27330 BM_eigen_i0e_double/4k 205043 205042 3418 BM_eigen_i0e_double/32k 1646038 1646176 422 BM_eigen_i0e_double/256k 13180959 13182613 53 BM_eigen_i0e_double/1M 52684617 52706132 10 BM_eigen_i0e_float/1 28.4 28.4 24636711 BM_eigen_i0e_float/8 75.7 75.7 9207634 BM_eigen_i0e_float/64 512 512 1000000 BM_eigen_i0e_float/512 4194 4194 166359 BM_eigen_i0e_float/4k 32756 32761 21373 BM_eigen_i0e_float/32k 261133 261153 2678 BM_eigen_i0e_float/256k 2087938 2088231 333 BM_eigen_i0e_float/1M 8380409 8381234 84 BM_eigen_i1e_double/1 56.3 56.3 10000000 BM_eigen_i1e_double/8 397 397 1772376 BM_eigen_i1e_double/64 3114 3115 223881 BM_eigen_i1e_double/512 25358 25361 27761 BM_eigen_i1e_double/4k 203543 203593 3462 BM_eigen_i1e_double/32k 1613649 1613803 428 BM_eigen_i1e_double/256k 12910625 12910374 54 BM_eigen_i1e_double/1M 51723824 51723991 10 BM_eigen_i1e_float/1 28.3 28.3 24683049 BM_eigen_i1e_float/8 74.8 74.9 9366216 BM_eigen_i1e_float/64 505 505 1000000 BM_eigen_i1e_float/512 4068 4068 171690 BM_eigen_i1e_float/4k 31803 31806 21948 BM_eigen_i1e_float/32k 253637 253692 2763 BM_eigen_i1e_float/256k 2019711 2019918 346 BM_eigen_i1e_float/1M 8238681 8238713 86 After: CPU: Intel Haswell with HyperThreading (6 cores) Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- BM_eigen_i0e_double/1 15.8 15.8 44097476 BM_eigen_i0e_double/8 99.3 99.3 7014884 BM_eigen_i0e_double/64 777 777 886612 BM_eigen_i0e_double/512 6180 6181 100000 BM_eigen_i0e_double/4k 48136 48140 14678 BM_eigen_i0e_double/32k 385936 385943 1801 BM_eigen_i0e_double/256k 3293324 3293551 228 BM_eigen_i0e_double/1M 12423600 12424458 57 BM_eigen_i0e_float/1 16.3 16.3 43038042 BM_eigen_i0e_float/8 30.1 30.1 23456931 BM_eigen_i0e_float/64 169 169 4132875 BM_eigen_i0e_float/512 1338 1339 516860 BM_eigen_i0e_float/4k 10191 10191 68513 BM_eigen_i0e_float/32k 81338 81337 8531 BM_eigen_i0e_float/256k 651807 651984 1000 BM_eigen_i0e_float/1M 2633821 2634187 268 BM_eigen_i1e_double/1 16.2 16.2 42352499 BM_eigen_i1e_double/8 110 110 6316524 BM_eigen_i1e_double/64 822 822 851065 BM_eigen_i1e_double/512 6480 6481 100000 BM_eigen_i1e_double/4k 51843 51843 10000 BM_eigen_i1e_double/32k 414854 414852 1680 BM_eigen_i1e_double/256k 3320001 3320568 212 BM_eigen_i1e_double/1M 13442795 13442391 53 BM_eigen_i1e_float/1 17.6 17.6 41025735 BM_eigen_i1e_float/8 35.5 35.5 19597891 BM_eigen_i1e_float/64 240 240 2924237 BM_eigen_i1e_float/512 1424 1424 485953 BM_eigen_i1e_float/4k 10722 10723 65162 BM_eigen_i1e_float/32k 86286 86297 8048 BM_eigen_i1e_float/256k 691821 691868 1000 BM_eigen_i1e_float/1M 2777336 2777747 256 This shows anywhere from a 50% to 75% improvement on these operations. I've also benchmarked without any of these flags turned on, and got similar performance to before (if not better). Also tested packetmath.cpp + special_functions to ensure no regressions. |
||
---|---|---|
.. | ||
CXX11 | ||
src | ||
AdolcForward | ||
AlignedVector3 | ||
ArpackSupport | ||
AutoDiff | ||
BVH | ||
CMakeLists.txt | ||
EulerAngles | ||
FFT | ||
IterativeSolvers | ||
KroneckerProduct | ||
LevenbergMarquardt | ||
MatrixFunctions | ||
MoreVectorization | ||
MPRealSupport | ||
NonLinearOptimization | ||
NumericalDiff | ||
OpenGLSupport | ||
Polynomials | ||
Skyline | ||
SparseExtra | ||
SpecialFunctions | ||
Splines |