mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
c1e2156d8a
- in matrix-matrix product, static assert on the two scalar types to be the same. - Similarly in CwiseBinaryOp. POTENTIALLY CONTROVERSIAL: we don't allow anymore binary ops to take two different scalar types. The functors that we defined take two args of the same type anyway; also we still allow the return type to be different. Again the reason is that different scalar types are incompatible with vectorization. Better have the user realize explicitly what mixing different numeric types costs him in terms of performance. See comment in CwiseBinaryOp constructor. - This allowed to fix a little mistake in test/regression.cpp, mixing float and double - Remove redundant semicolon (;) after static asserts
118 lines
4.7 KiB
C++
118 lines
4.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Regression>
|
|
|
|
template<typename VectorType,
|
|
typename HyperplaneType>
|
|
void makeNoisyCohyperplanarPoints(int numPoints,
|
|
VectorType **points,
|
|
HyperplaneType *hyperplane,
|
|
typename VectorType::Scalar noiseAmplitude )
|
|
{
|
|
typedef typename VectorType::Scalar Scalar;
|
|
const int size = points[0]->size();
|
|
// pick a random hyperplane, store the coefficients of its equation
|
|
hyperplane->coeffs().resize(size + 1);
|
|
for(int j = 0; j < size + 1; j++)
|
|
{
|
|
do {
|
|
hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>();
|
|
} while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5);
|
|
}
|
|
|
|
// now pick numPoints random points on this hyperplane
|
|
for(int i = 0; i < numPoints; i++)
|
|
{
|
|
VectorType& cur_point = *(points[i]);
|
|
do
|
|
{
|
|
cur_point = VectorType::Random(size)/*.normalized()*/;
|
|
// project cur_point onto the hyperplane
|
|
Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum();
|
|
cur_point *= hyperplane->coeffs().coeff(size) / x;
|
|
} while( cur_point.norm() < 0.5
|
|
|| cur_point.norm() > 2.0 );
|
|
}
|
|
|
|
// add some noise to these points
|
|
for(int i = 0; i < numPoints; i++ )
|
|
*(points[i]) += noiseAmplitude * VectorType::Random(size);
|
|
}
|
|
|
|
template<typename VectorType,
|
|
typename HyperplaneType>
|
|
void check_fitHyperplane(int numPoints,
|
|
VectorType **points,
|
|
const HyperplaneType& original,
|
|
typename VectorType::Scalar tolerance)
|
|
{
|
|
int size = points[0]->size();
|
|
HyperplaneType result(size);
|
|
fitHyperplane(numPoints, points, &result);
|
|
result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size);
|
|
typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm();
|
|
VERIFY(ei_abs(error) < ei_abs(tolerance));
|
|
}
|
|
|
|
void test_regression()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++)
|
|
{
|
|
{
|
|
Vector2f points2f [1000];
|
|
Vector2f *points2f_ptrs [1000];
|
|
for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
|
|
Hyperplane<float,2> coeffs3f;
|
|
makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
|
|
CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f));
|
|
CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f));
|
|
CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f));
|
|
}
|
|
|
|
{
|
|
Vector4d points4d [1000];
|
|
Vector4d *points4d_ptrs [1000];
|
|
for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]);
|
|
Hyperplane<double,4> coeffs5d;
|
|
makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01);
|
|
CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05));
|
|
CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01));
|
|
CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002));
|
|
}
|
|
|
|
{
|
|
VectorXcd *points11cd_ptrs[1000];
|
|
for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11);
|
|
Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11);
|
|
makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01);
|
|
CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025));
|
|
CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006));
|
|
delete coeffs12cd;
|
|
for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i];
|
|
}
|
|
}
|
|
}
|