mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
149 lines
5.0 KiB
C++
149 lines
5.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Geometry>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/SVD>
|
|
|
|
template<typename Scalar> void quaternion(void)
|
|
{
|
|
/* this test covers the following files:
|
|
Quaternion.h
|
|
*/
|
|
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
typedef Quaternion<Scalar> Quaternionx;
|
|
typedef AngleAxis<Scalar> AngleAxisx;
|
|
|
|
Scalar largeEps = test_precision<Scalar>();
|
|
if (ei_is_same_type<Scalar,float>::ret)
|
|
largeEps = 1e-3f;
|
|
|
|
Scalar eps = ei_random<Scalar>() * Scalar(1e-2);
|
|
|
|
Vector3 v0 = Vector3::Random(),
|
|
v1 = Vector3::Random(),
|
|
v2 = Vector3::Random(),
|
|
v3 = Vector3::Random();
|
|
|
|
Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
|
|
|
|
// Quaternion: Identity(), setIdentity();
|
|
Quaternionx q1, q2;
|
|
q2.setIdentity();
|
|
VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
|
|
q1.coeffs().setRandom();
|
|
VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
|
|
|
|
// concatenation
|
|
q1 *= q2;
|
|
|
|
q1 = AngleAxisx(a, v0.normalized());
|
|
q2 = AngleAxisx(a, v1.normalized());
|
|
|
|
// angular distance
|
|
Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
|
|
if (refangle>Scalar(M_PI))
|
|
refangle = Scalar(2)*Scalar(M_PI) - refangle;
|
|
|
|
if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
|
|
{
|
|
VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
|
|
}
|
|
|
|
// rotation matrix conversion
|
|
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
|
|
VERIFY_IS_APPROX(q1 * q2 * v2,
|
|
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
|
|
|
|
VERIFY( (q2*q1).isApprox(q1*q2, largeEps)
|
|
|| !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
|
|
|
|
q2 = q1.toRotationMatrix();
|
|
VERIFY_IS_APPROX(q1*v1,q2*v1);
|
|
|
|
|
|
// angle-axis conversion
|
|
AngleAxisx aa = AngleAxisx(q1);
|
|
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
|
|
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
|
|
|
|
// from two vector creation
|
|
VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
|
|
VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
|
|
VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
|
|
if (ei_is_same_type<Scalar,double>::ret)
|
|
{
|
|
v3 = (v1.array()+eps).matrix();
|
|
VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
|
|
VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
|
|
}
|
|
|
|
// inverse and conjugate
|
|
VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
|
|
VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
|
|
|
|
// test casting
|
|
Quaternion<float> q1f = q1.template cast<float>();
|
|
VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
|
|
Quaternion<double> q1d = q1.template cast<double>();
|
|
VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
|
|
}
|
|
|
|
template<typename Scalar> void mapQuaternion(void){
|
|
typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
|
|
typedef Map<Quaternion<Scalar> > MQuaternionUA;
|
|
typedef Quaternion<Scalar> Quaternionx;
|
|
|
|
EIGEN_ALIGN16 Scalar array1[4];
|
|
EIGEN_ALIGN16 Scalar array2[4];
|
|
EIGEN_ALIGN16 Scalar array3[4+1];
|
|
Scalar* array3unaligned = array3+1;
|
|
|
|
MQuaternionA(array1).coeffs().setRandom();
|
|
(MQuaternionA(array2)) = MQuaternionA(array1);
|
|
(MQuaternionUA(array3unaligned)) = MQuaternionA(array1);
|
|
|
|
Quaternionx q1 = MQuaternionA(array1);
|
|
Quaternionx q2 = MQuaternionA(array2);
|
|
Quaternionx q3 = MQuaternionUA(array3unaligned);
|
|
|
|
VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
|
|
VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
|
|
VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
|
|
}
|
|
|
|
void test_geo_quaternion()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( quaternion<float>() );
|
|
CALL_SUBTEST_2( quaternion<double>() );
|
|
CALL_SUBTEST( mapQuaternion<float>() );
|
|
CALL_SUBTEST( mapQuaternion<double>() );
|
|
}
|
|
}
|