mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
134 lines
4.2 KiB
C++
134 lines
4.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "matrix_functions.h"
|
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
|
struct generateTriangularMatrix;
|
|
|
|
// for real matrices, make sure none of the eigenvalues are negative
|
|
template <typename MatrixType>
|
|
struct generateTriangularMatrix<MatrixType,0>
|
|
{
|
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
|
{
|
|
result.resize(size, size);
|
|
result.template triangularView<Upper>() = MatrixType::Random(size, size);
|
|
for (typename MatrixType::Index i = 0; i < size; ++i)
|
|
result.coeffRef(i,i) = std::abs(result.coeff(i,i));
|
|
}
|
|
};
|
|
|
|
// for complex matrices, any matrix is fine
|
|
template <typename MatrixType>
|
|
struct generateTriangularMatrix<MatrixType,1>
|
|
{
|
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
|
{
|
|
result.resize(size, size);
|
|
result.template triangularView<Upper>() = MatrixType::Random(size, size);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
void test2dRotation(double tol)
|
|
{
|
|
Matrix<T,2,2> A, B, C;
|
|
T angle, c, s;
|
|
|
|
A << 0, 1, -1, 0;
|
|
MatrixPower<Matrix<T,2,2> > Apow(A);
|
|
|
|
for (int i=0; i<=20; ++i) {
|
|
angle = pow(10, (i-10) / 5.);
|
|
c = std::cos(angle);
|
|
s = std::sin(angle);
|
|
B << c, s, -s, c;
|
|
|
|
C = Apow(std::ldexp(angle,1) / M_PI);
|
|
std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
|
|
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void test2dHyperbolicRotation(double tol)
|
|
{
|
|
Matrix<std::complex<T>,2,2> A, B, C;
|
|
T angle, ch = std::cosh((T)1);
|
|
std::complex<T> ish(0, std::sinh((T)1));
|
|
|
|
A << ch, ish, -ish, ch;
|
|
MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);
|
|
|
|
for (int i=0; i<=20; ++i) {
|
|
angle = std::ldexp(static_cast<T>(i-10), -1);
|
|
ch = std::cosh(angle);
|
|
ish = std::complex<T>(0, std::sinh(angle));
|
|
B << ch, ish, -ish, ch;
|
|
|
|
C = Apow(angle);
|
|
std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
|
|
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testExponentLaws(const MatrixType& m, double tol)
|
|
{
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType m1, m2, m3, m4, m5;
|
|
RealScalar x, y;
|
|
|
|
for (int i=0; i < g_repeat; ++i) {
|
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
MatrixPower<MatrixType> mpow(m1);
|
|
|
|
x = internal::random<RealScalar>();
|
|
y = internal::random<RealScalar>();
|
|
m2 = mpow(x);
|
|
m3 = mpow(y);
|
|
|
|
m4 = mpow(x+y);
|
|
m5.noalias() = m2 * m3;
|
|
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
|
|
|
|
m4 = mpow(x*y);
|
|
m5 = m2.pow(y);
|
|
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
|
|
|
|
m4 = (std::abs(x) * m1).pow(y);
|
|
m5 = std::pow(std::abs(x), y) * m3;
|
|
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
|
|
}
|
|
}
|
|
|
|
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
|
|
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
|
|
|
|
void test_matrix_power()
|
|
{
|
|
CALL_SUBTEST_2(test2dRotation<double>(1e-13));
|
|
CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
|
|
CALL_SUBTEST_9(test2dRotation<long double>(1e-13));
|
|
CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
|
|
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
|
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
|
|
|
CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13));
|
|
CALL_SUBTEST_7(testExponentLaws(Matrix3dRowMajor(), 1e-13));
|
|
CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13));
|
|
CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 2e-12));
|
|
CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4));
|
|
CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4));
|
|
CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4));
|
|
CALL_SUBTEST_6(testExponentLaws(MatrixXf(2,2), 1e-3)); // see bug 614
|
|
CALL_SUBTEST_9(testExponentLaws(MatrixXe(7,7), 1e-13));
|
|
}
|