mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
87 lines
2.8 KiB
C++
87 lines
2.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void matrixSum(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
|
|
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
|
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(rows*cols));
|
|
Scalar x = Scalar(0);
|
|
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j);
|
|
VERIFY_IS_APPROX(m1.sum(), x);
|
|
}
|
|
|
|
template<typename VectorType> void vectorSum(const VectorType& w)
|
|
{
|
|
typedef typename VectorType::Scalar Scalar;
|
|
int size = w.size();
|
|
|
|
VectorType v = VectorType::Random(size);
|
|
for(int i = 1; i < size; i++)
|
|
{
|
|
Scalar s = Scalar(0);
|
|
for(int j = 0; j < i; j++) s += v[j];
|
|
VERIFY_IS_APPROX(s, v.start(i).sum());
|
|
}
|
|
|
|
for(int i = 0; i < size-1; i++)
|
|
{
|
|
Scalar s = Scalar(0);
|
|
for(int j = i; j < size; j++) s += v[j];
|
|
VERIFY_IS_APPROX(s, v.end(size-i).sum());
|
|
}
|
|
|
|
for(int i = 0; i < size/2; i++)
|
|
{
|
|
Scalar s = Scalar(0);
|
|
for(int j = i; j < size-i; j++) s += v[j];
|
|
VERIFY_IS_APPROX(s, v.block(i, size-2*i).sum());
|
|
}
|
|
}
|
|
|
|
void test_sum()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( matrixSum(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( matrixSum(Matrix2f()) );
|
|
CALL_SUBTEST( matrixSum(Matrix4d()) );
|
|
CALL_SUBTEST( matrixSum(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST( matrixSum(MatrixXf(8, 12)) );
|
|
CALL_SUBTEST( matrixSum(MatrixXi(8, 12)) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( vectorSum(VectorXf(5)) );
|
|
CALL_SUBTEST( vectorSum(VectorXd(10)) );
|
|
CALL_SUBTEST( vectorSum(VectorXf(100)) );
|
|
}
|
|
}
|