mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
c10f069b6b
Renamed "MatrixBase::extract() const" to "MatrixBase::part() const" * Renamed static functions identity, zero, ones, random with an upper case first letter: Identity, Zero, Ones and Random.
90 lines
3.5 KiB
C++
90 lines
3.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <functional>
|
|
#include <Eigen/Array>
|
|
|
|
using namespace std;
|
|
|
|
template<typename Scalar> struct AddIfNull {
|
|
const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
|
|
enum { Cost = NumTraits<Scalar>::AddCost };
|
|
};
|
|
|
|
template<typename MatrixType> void cwiseops(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols),
|
|
mones = MatrixType::Ones(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Identity(rows, rows),
|
|
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Random(rows, rows);
|
|
VectorType v1 = VectorType::Random(rows),
|
|
v2 = VectorType::Random(rows),
|
|
vzero = VectorType::Zero(rows);
|
|
|
|
m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
|
|
|
|
VERIFY_IS_APPROX( mzero, m1-m1);
|
|
VERIFY_IS_APPROX( m2, m1+m2-m1);
|
|
#ifdef EIGEN_VECTORIZE
|
|
if(NumTraits<Scalar>::HasFloatingPoint)
|
|
#endif
|
|
{
|
|
VERIFY_IS_APPROX( mones, m2.cwise()/m2);
|
|
}
|
|
VERIFY_IS_APPROX( m1.cwise() * m2, m2.cwise() * m1);
|
|
|
|
VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
|
|
VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
|
|
VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
|
|
//VERIFY_IS_APPROX( m1, m2.cwiseProduct(m1).cwiseQuotient(m2));
|
|
|
|
// VERIFY_IS_APPROX( cwiseMin(m1,m2), cwiseMin(m2,m1) );
|
|
// VERIFY_IS_APPROX( cwiseMin(m1,m1+mones), m1 );
|
|
// VERIFY_IS_APPROX( cwiseMin(m1,m1-mones), m1-mones );
|
|
}
|
|
|
|
void test_cwiseop()
|
|
{
|
|
for(int i = 0; i < g_repeat ; i++) {
|
|
CALL_SUBTEST( cwiseops(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( cwiseops(Matrix4d()) );
|
|
CALL_SUBTEST( cwiseops(MatrixXf(3, 3)) );
|
|
CALL_SUBTEST( cwiseops(MatrixXi(8, 12)) );
|
|
CALL_SUBTEST( cwiseops(MatrixXd(20, 20)) );
|
|
}
|
|
}
|