mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
86 lines
3.5 KiB
C++
86 lines
3.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void syrk(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
|
|
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols);
|
|
|
|
Rhs1 rhs1 = Rhs1::Random(ei_random<int>(1,320), cols);
|
|
Rhs2 rhs2 = Rhs2::Random(rows, ei_random<int>(1,320));
|
|
Rhs3 rhs3 = Rhs3::Random(ei_random<int>(1,320), rows);
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2,s1)._expression()),
|
|
((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2,s1)._expression(),
|
|
(s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(),
|
|
(s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(),s1)._expression(),
|
|
(s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(),s1)._expression(),
|
|
(s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(),s1)._expression(),
|
|
(s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix());
|
|
}
|
|
|
|
void test_product_syrk()
|
|
{
|
|
for(int i = 0; i < g_repeat ; i++)
|
|
{
|
|
int s;
|
|
s = ei_random<int>(10,320);
|
|
CALL_SUBTEST_1( syrk(MatrixXf(s, s)) );
|
|
s = ei_random<int>(10,320);
|
|
CALL_SUBTEST_2( syrk(MatrixXd(s, s)) );
|
|
s = ei_random<int>(10,320);
|
|
CALL_SUBTEST_3( syrk(MatrixXcd(s, s)) );
|
|
}
|
|
}
|