mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
c5d7c9f0de
and remove the respective bit flags
85 lines
3.0 KiB
C++
85 lines
3.0 KiB
C++
// This file is triangularView of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void bandmatrix(const MatrixType& _m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrixType;
|
|
|
|
int rows = _m.rows();
|
|
int cols = _m.cols();
|
|
int supers = _m.supers();
|
|
int subs = _m.subs();
|
|
|
|
MatrixType m(rows,cols,supers,subs);
|
|
|
|
DenseMatrixType dm1(rows,cols);
|
|
dm1.setZero();
|
|
|
|
m.diagonal().setConstant(123);
|
|
dm1.diagonal().setConstant(123);
|
|
for (int i=1; i<=m.supers();++i)
|
|
{
|
|
m.diagonal(i).setConstant(static_cast<RealScalar>(i));
|
|
dm1.diagonal(i).setConstant(static_cast<RealScalar>(i));
|
|
}
|
|
for (int i=1; i<=m.subs();++i)
|
|
{
|
|
m.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
|
|
dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
|
|
}
|
|
//std::cerr << m.m_data << "\n\n" << m.toDense() << "\n\n" << dm1 << "\n\n\n\n";
|
|
VERIFY_IS_APPROX(dm1,m.toDenseMatrix());
|
|
|
|
for (int i=0; i<cols; ++i)
|
|
{
|
|
m.col(i).setConstant(static_cast<RealScalar>(i+1));
|
|
dm1.col(i).setConstant(static_cast<RealScalar>(i+1));
|
|
}
|
|
int d = std::min(rows,cols);
|
|
int a = std::max(0,cols-d-supers);
|
|
int b = std::max(0,rows-d-subs);
|
|
if(a>0) dm1.block(0,d+supers,rows,a).setZero();
|
|
dm1.block(0,supers+1,cols-supers-1-a,cols-supers-1-a).template triangularView<Upper>().setZero();
|
|
dm1.block(subs+1,0,rows-subs-1-b,rows-subs-1-b).template triangularView<Lower>().setZero();
|
|
if(b>0) dm1.block(d+subs,0,b,cols).setZero();
|
|
//std::cerr << m.m_data << "\n\n" << m.toDense() << "\n\n" << dm1 << "\n\n";
|
|
VERIFY_IS_APPROX(dm1,m.toDenseMatrix());
|
|
|
|
}
|
|
|
|
void test_bandmatrix()
|
|
{
|
|
for(int i = 0; i < 10*g_repeat ; i++) {
|
|
int rows = ei_random<int>(1,10);
|
|
int cols = ei_random<int>(1,10);
|
|
int sups = ei_random<int>(0,cols-1);
|
|
int subs = ei_random<int>(0,rows-1);
|
|
CALL_SUBTEST(bandmatrix(BandMatrix<float>(rows,cols,sups,subs)) );
|
|
}
|
|
}
|