mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
78 lines
2.5 KiB
Plaintext
78 lines
2.5 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_scan_cuda
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
#define EIGEN_USE_GPU
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
|
|
using Eigen::Tensor;
|
|
typedef Tensor<float, 1>::DimensionPair DimPair;
|
|
|
|
template<int DataLayout>
|
|
void test_cuda_cumsum(int m_size, int k_size, int n_size)
|
|
{
|
|
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
|
|
Tensor<float, 3, DataLayout> t_input(m_size, k_size, n_size);
|
|
Tensor<float, 3, DataLayout> t_result(m_size, k_size, n_size);
|
|
Tensor<float, 3, DataLayout> t_result_gpu(m_size, k_size, n_size);
|
|
|
|
t_input.setRandom();
|
|
|
|
std::size_t t_input_bytes = t_input.size() * sizeof(float);
|
|
std::size_t t_result_bytes = t_result.size() * sizeof(float);
|
|
|
|
float* d_t_input;
|
|
float* d_t_result;
|
|
|
|
cudaMalloc((void**)(&d_t_input), t_input_bytes);
|
|
cudaMalloc((void**)(&d_t_result), t_result_bytes);
|
|
|
|
cudaMemcpy(d_t_input, t_input.data(), t_input_bytes, cudaMemcpyHostToDevice);
|
|
|
|
Eigen::CudaStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> >
|
|
gpu_t_input(d_t_input, Eigen::array<int, 3>(m_size, k_size, n_size));
|
|
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> >
|
|
gpu_t_result(d_t_result, Eigen::array<int, 3>(m_size, k_size, n_size));
|
|
|
|
gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1);
|
|
t_result = t_input.cumsum(1);
|
|
|
|
cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
|
|
for (DenseIndex i = 0; i < t_result.size(); i++) {
|
|
if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
|
|
continue;
|
|
}
|
|
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
|
|
continue;
|
|
}
|
|
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
|
|
<< " vs " << t_result_gpu(i) << std::endl;
|
|
assert(false);
|
|
}
|
|
|
|
cudaFree((void*)d_t_input);
|
|
cudaFree((void*)d_t_result);
|
|
}
|
|
|
|
|
|
void test_cxx11_tensor_scan_cuda()
|
|
{
|
|
CALL_SUBTEST_1(test_cuda_cumsum<ColMajor>(128, 128, 128));
|
|
CALL_SUBTEST_2(test_cuda_cumsum<RowMajor>(128, 128, 128));
|
|
}
|