mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
17ec407ccd
* fix .normalized() so that Random().normalized() works; since the return type became complicated to write down i just let it return an actual vector, perhaps not optimal. * add Sparse/CMakeLists.txt. I suppose that it was intentional that it didn't have CMakeLists, but in <=2.0 releases I'll just manually remove Sparse.
117 lines
4.4 KiB
C++
117 lines
4.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Regression>
|
|
|
|
template<typename VectorType,
|
|
typename BigVecType>
|
|
void makeNoisyCohyperplanarPoints(int numPoints,
|
|
VectorType **points,
|
|
BigVecType *coeffs,
|
|
typename VectorType::Scalar noiseAmplitude )
|
|
{
|
|
typedef typename VectorType::Scalar Scalar;
|
|
const int size = points[0]->size();
|
|
// pick a random hyperplane, store the coefficients of its equation
|
|
coeffs->resize(size + 1);
|
|
for(int j = 0; j < size + 1; j++)
|
|
{
|
|
do {
|
|
coeffs->coeffRef(j) = ei_random<Scalar>();
|
|
} while(ei_abs(coeffs->coeffRef(j)) < 0.5);
|
|
}
|
|
|
|
// now pick numPoints random points on this hyperplane
|
|
for(int i = 0; i < numPoints; i++)
|
|
{
|
|
VectorType& cur_point = *(points[i]);
|
|
do
|
|
{
|
|
cur_point = VectorType::Random(size)/*.normalized()*/;
|
|
// project cur_point onto the hyperplane
|
|
Scalar x = - (coeffs->start(size).cwise()*cur_point).sum();
|
|
cur_point *= coeffs->coeff(size) / x;
|
|
} while( ei_abs(cur_point.norm()) < 0.5
|
|
|| ei_abs(cur_point.norm()) > 2.0 );
|
|
}
|
|
|
|
// add some noise to these points
|
|
for(int i = 0; i < numPoints; i++ )
|
|
*(points[i]) += noiseAmplitude * VectorType::Random(size);
|
|
}
|
|
|
|
template<typename VectorType,
|
|
typename BigVecType>
|
|
void check_fitHyperplane(int numPoints,
|
|
VectorType **points,
|
|
BigVecType *coeffs,
|
|
typename VectorType::Scalar tolerance)
|
|
{
|
|
int size = points[0]->size();
|
|
BigVecType result(size + 1);
|
|
fitHyperplane(numPoints, points, &result);
|
|
result /= result.coeff(size);
|
|
result *= coeffs->coeff(size);
|
|
typename VectorType::Scalar error = (result - *coeffs).norm() / coeffs->norm();
|
|
VERIFY(ei_abs(error) < ei_abs(tolerance));
|
|
}
|
|
|
|
void test_regression()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++)
|
|
{
|
|
{
|
|
Vector2f points2f [1000];
|
|
Vector2f *points2f_ptrs [1000];
|
|
for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
|
|
Vector3f coeffs3f;
|
|
makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
|
|
CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, &coeffs3f, 0.05f));
|
|
CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, &coeffs3f, 0.01f));
|
|
CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, &coeffs3f, 0.002f));
|
|
}
|
|
|
|
{
|
|
Vector4d points4d [1000];
|
|
Vector4d *points4d_ptrs [1000];
|
|
for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]);
|
|
Matrix<double,5,1> coeffs5d;
|
|
makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01);
|
|
CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, &coeffs5d, 0.05));
|
|
CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, &coeffs5d, 0.01));
|
|
CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, &coeffs5d, 0.002));
|
|
}
|
|
|
|
{
|
|
VectorXcd *points11cd_ptrs[1000];
|
|
for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11);
|
|
VectorXcd *coeffs12cd = new VectorXcd(12);
|
|
makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01);
|
|
CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, coeffs12cd, 0.025));
|
|
CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, coeffs12cd, 0.006));
|
|
}
|
|
}
|
|
}
|