eigen/test/geometry.cpp
Gael Guennebaud f0394edfa7 * bugfix in SolveTriangular found by Timothy Hunter (did not compiled for very small fixed size matrices)
* bugfix in Dot unroller
* added special random generator for the unit tests and reduced the tolerance threshold by an order of magnitude
  this fixes issues with sum.cpp but other tests still failed sometimes, this have to be carefully checked...
2008-08-22 17:48:36 +00:00

167 lines
5.5 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
template<typename Scalar> void geometry(void)
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
typedef Matrix<Scalar,2,2> Matrix2;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,4,4> Matrix4;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternion;
typedef AngleAxis<Scalar> AngleAxis;
Quaternion q1, q2;
Vector3 v0 = test_random_matrix<Vector3>(),
v1 = test_random_matrix<Vector3>(),
v2 = test_random_matrix<Vector3>();
Vector2 u0 = test_random_matrix<Vector2>();
Matrix3 matrot1;
Scalar a = ei_random<Scalar>(-M_PI, M_PI);
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
Matrix3 m;
m << v0.normalized(),
(v0.cross(v1)).normalized(),
(v0.cross(v1).cross(v0)).normalized();
VERIFY(m.isUnitary());
// someOrthogonal
VERIFY_IS_MUCH_SMALLER_THAN(u0.someOrthogonal().dot(u0), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v0.someOrthogonal().dot(v0), Scalar(1));
q1 = AngleAxis(ei_random<Scalar>(-M_PI, M_PI), v0.normalized());
q2 = AngleAxis(ei_random<Scalar>(-M_PI, M_PI), v1.normalized());
// rotation matrix conversion
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
VERIFY_IS_APPROX(q1 * q2 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
VERIFY_IS_NOT_APPROX(q2 * q1 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
q2 = q1.toRotationMatrix();
VERIFY_IS_APPROX(q1*v1,q2*v1);
matrot1 = AngleAxis(0.1, Vector3::UnitX())
* AngleAxis(0.2, Vector3::UnitY())
* AngleAxis(0.3, Vector3::UnitZ());
VERIFY_IS_APPROX(matrot1 * v1,
AngleAxis(0.1, Vector3(1,0,0)).toRotationMatrix()
* (AngleAxis(0.2, Vector3(0,1,0)).toRotationMatrix()
* (AngleAxis(0.3, Vector3(0,0,1)).toRotationMatrix() * v1)));
// angle-axis conversion
AngleAxis aa = q1;
VERIFY_IS_APPROX(q1 * v1, Quaternion(aa) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternion(AngleAxis(aa.angle()*2,aa.axis())) * v1);
// from two vector creation
VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
// inverse and conjugate
VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
// AngleAxis
VERIFY_IS_APPROX(AngleAxis(a,v1.normalized()).toRotationMatrix(),
Quaternion(AngleAxis(a,v1.normalized())).toRotationMatrix());
AngleAxis aa1;
m = q1.toRotationMatrix();
aa1 = m;
VERIFY_IS_APPROX(AngleAxis(m).toRotationMatrix(),
Quaternion(m).toRotationMatrix());
// Transform
// TODO complete the tests !
typedef Transform<Scalar,2> Transform2;
typedef Transform<Scalar,3> Transform3;
a = 0;
while (ei_abs(a)<0.1)
a = ei_random<Scalar>(-0.4*M_PI, 0.4*M_PI);
q1 = AngleAxis(a, v0.normalized());
Transform3 t0, t1, t2;
t0.setIdentity();
t0.linear() = q1.toRotationMatrix();
t1.setIdentity();
t1.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;//= test_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
t0.scale(v0);
t1.prescale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
VERIFY_IS_NOT_APPROX((t1 * Vector3(1,0,0)).norm(), v0.x());
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwise().inverse());
t1.translate(-v0);
VERIFY((t0.matrix() * t1.matrix()).isIdentity());
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
// 2D transformation
Transform2 t20, t21;
Vector2 v20 = test_random_matrix<Vector2>();
Vector2 v21 = test_random_matrix<Vector2>();
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
t21.pretranslate(v20).scale(v21).matrix());
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) * (t21.prescale(v21.cwise().inverse()).translate(-v20))).isIdentity() );
}
void test_geometry()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( geometry<float>() );
CALL_SUBTEST( geometry<double>() );
}
}