mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
5f3606bce9
some compilation fixes in sparse_solvers
237 lines
8.4 KiB
C++
237 lines
8.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "sparse.h"
|
|
|
|
template<typename Scalar> void
|
|
initSPD(double density,
|
|
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
|
SparseMatrix<Scalar>& sparseMat)
|
|
{
|
|
Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols());
|
|
initSparse(density,refMat,sparseMat);
|
|
refMat = refMat * refMat.adjoint();
|
|
for (int k=0; k<2; ++k)
|
|
{
|
|
initSparse(density,aux,sparseMat,ForceNonZeroDiag);
|
|
refMat += aux * aux.adjoint();
|
|
}
|
|
sparseMat.setZero();
|
|
for (int j=0 ; j<sparseMat.cols(); ++j)
|
|
for (int i=j ; i<sparseMat.rows(); ++i)
|
|
if (refMat(i,j)!=Scalar(0))
|
|
sparseMat.insert(i,j) = refMat(i,j);
|
|
sparseMat.finalize();
|
|
}
|
|
|
|
template<typename Scalar> void sparse_solvers(int rows, int cols)
|
|
{
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
// Scalar eps = 1e-6;
|
|
|
|
DenseVector vec1 = DenseVector::Random(rows);
|
|
|
|
std::vector<Vector2i> zeroCoords;
|
|
std::vector<Vector2i> nonzeroCoords;
|
|
|
|
// test triangular solver
|
|
{
|
|
DenseVector vec2 = vec1, vec3 = vec1;
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
|
|
// lower - dense
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template triangularView<LowerTriangular>().solve(vec2),
|
|
m2.template triangular<LowerTriangular>().solve(vec3));
|
|
|
|
// upper - dense
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template triangularView<UpperTriangular>().solve(vec2),
|
|
m2.template triangular<UpperTriangular>().solve(vec3));
|
|
|
|
// TODO test row major
|
|
|
|
SparseMatrix<Scalar> matB(rows, rows);
|
|
DenseMatrix refMatB = DenseMatrix::Zero(rows, rows);
|
|
|
|
// lower - sparse
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular);
|
|
initSparse<Scalar>(density, refMatB, matB);
|
|
refMat2.template triangularView<LowerTriangular>().solveInPlace(refMatB);
|
|
m2.template triangular<LowerTriangular>().solveInPlace(matB);
|
|
VERIFY_IS_APPROX(matB.toDense(), refMatB);
|
|
|
|
// upper - sparse
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular);
|
|
initSparse<Scalar>(density, refMatB, matB);
|
|
refMat2.template triangularView<UpperTriangular>().solveInPlace(refMatB);
|
|
m2.template triangular<UpperTriangular>().solveInPlace(matB);
|
|
VERIFY_IS_APPROX(matB, refMatB);
|
|
|
|
// test deprecated API
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template triangularView<LowerTriangular>().solve(vec2),
|
|
m2.template triangular<LowerTriangular>().solve(vec3));
|
|
}
|
|
|
|
// test LLT
|
|
{
|
|
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSPD(density, refMat2, m2);
|
|
|
|
refMat2.llt().solve(b, &refX);
|
|
typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
|
}
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
|
|
#endif
|
|
|
|
#ifdef EIGEN_TAUCS_SUPPORT
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
|
|
// TODO fix TAUCS with complexes
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
|
|
#endif
|
|
}
|
|
|
|
// test LDLT
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
// TODO fix the issue with complex (see SparseLDLT::solveInPlace)
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
//initSPD(density, refMat2, m2);
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
|
|
refMat2 += refMat2.adjoint();
|
|
refMat2.diagonal() *= 0.5;
|
|
|
|
refMat2.llt().solve(b, &refX); // FIXME use LLT to compute the reference because LDLT seems to fail with large matrices
|
|
typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
x = b;
|
|
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
|
if (ldlt.succeeded())
|
|
ldlt.solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
|
}
|
|
|
|
// test LU
|
|
{
|
|
static int count = 0;
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
|
|
|
LU<DenseMatrix> refLu(refMat2);
|
|
refLu.solve(b, &refX);
|
|
#if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
|
|
Scalar refDet = refLu.determinant();
|
|
#endif
|
|
x.setZero();
|
|
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
|
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
{
|
|
x.setZero();
|
|
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
|
|
if (slu.succeeded())
|
|
{
|
|
if (slu.solve(b,&x)) {
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
|
}
|
|
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
|
if (slu.solve(b, &x, SvTranspose)) {
|
|
VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>()));
|
|
}
|
|
|
|
if (slu.solve(b, &x, SvAdjoint)) {
|
|
// VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>()));
|
|
}
|
|
|
|
if (count==0) {
|
|
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
{
|
|
// check solve
|
|
x.setZero();
|
|
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
|
|
if (slu.succeeded()) {
|
|
if (slu.solve(b,&x)) {
|
|
if (count==0) {
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(refDet,slu.determinant());
|
|
// TODO check the extracted data
|
|
//std::cerr << slu.matrixL() << "\n";
|
|
}
|
|
}
|
|
#endif
|
|
count++;
|
|
}
|
|
|
|
}
|
|
|
|
void test_sparse_solvers()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
// CALL_SUBTEST( sparse_solvers<double>(8, 8) );
|
|
CALL_SUBTEST( sparse_solvers<std::complex<double> >(16, 16) );
|
|
// CALL_SUBTEST( sparse_solvers<double>(100, 100) );
|
|
}
|
|
}
|