mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
162 lines
7.3 KiB
C++
162 lines
7.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <Eigen/Eigenvalues>
|
|
|
|
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
/* this test covers the following files:
|
|
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
|
|
*/
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
|
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
|
|
|
RealScalar largerEps = 10*test_precision<RealScalar>();
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
|
symmA.template triangularView<StrictlyUpper>().setZero();
|
|
|
|
MatrixType b = MatrixType::Random(rows,cols);
|
|
MatrixType b1 = MatrixType::Random(rows,cols);
|
|
MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
|
|
symmB.template triangularView<StrictlyUpper>().setZero();
|
|
|
|
SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
|
|
SelfAdjointEigenSolver<MatrixType> eiDirect;
|
|
eiDirect.computeDirect(symmA);
|
|
// generalized eigen pb
|
|
GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
|
|
|
|
VERIFY_IS_EQUAL(eiSymm.info(), Success);
|
|
VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
|
|
eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
|
|
VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
|
|
|
|
VERIFY_IS_EQUAL(eiDirect.info(), Success);
|
|
VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
|
|
eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
|
|
VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
|
|
|
|
SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
|
|
VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
|
|
VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
|
|
|
|
// generalized eigen problem Ax = lBx
|
|
eiSymmGen.compute(symmA, symmB,Ax_lBx);
|
|
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
|
VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
|
|
symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
|
|
|
// generalized eigen problem BAx = lx
|
|
eiSymmGen.compute(symmA, symmB,BAx_lx);
|
|
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
|
VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
|
(eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
|
|
|
// generalized eigen problem ABx = lx
|
|
eiSymmGen.compute(symmA, symmB,ABx_lx);
|
|
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
|
VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
|
(eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
|
|
|
|
|
MatrixType sqrtSymmA = eiSymm.operatorSqrt();
|
|
VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
|
|
VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
|
|
|
|
MatrixType id = MatrixType::Identity(rows, cols);
|
|
VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
|
|
|
|
SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
|
|
|
|
eiSymmUninitialized.compute(symmA, false);
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
|
|
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
|
|
|
|
// test Tridiagonalization's methods
|
|
Tridiagonalization<MatrixType> tridiag(symmA);
|
|
// FIXME tridiag.matrixQ().adjoint() does not work
|
|
VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
|
|
|
|
if (rows > 1)
|
|
{
|
|
// Test matrix with NaN
|
|
symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
|
SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
|
|
VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
|
|
}
|
|
}
|
|
|
|
void test_eigensolver_selfadjoint()
|
|
{
|
|
int s;
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
// very important to test 3x3 and 2x2 matrices since we provide special paths for them
|
|
CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) );
|
|
CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
|
|
CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
|
|
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
|
|
|
|
// some trivial but implementation-wise tricky cases
|
|
CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
|
|
CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
|
|
CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
|
|
}
|
|
|
|
// Test problem size constructors
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf>(s));
|
|
CALL_SUBTEST_8(Tridiagonalization<MatrixXf>(s));
|
|
|
|
EIGEN_UNUSED_VARIABLE(s)
|
|
}
|
|
|