eigen/test/product_mmtr.cpp
Gael Guennebaud 82f0ce2726 Get rid of EIGEN_TEST_FUNC, unit tests must now be declared with EIGEN_DECLARE_TEST(mytest) { /* code */ }.
This provide several advantages:
- more flexibility in designing unit tests
- unit tests can be glued to speed up compilation
- unit tests are compiled with same predefined macros, which is a requirement for zapcc
2018-07-17 14:46:15 +02:00

97 lines
4.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#define CHECK_MMTR(DEST, TRI, OP) { \
ref3 = DEST; \
ref2 = ref1 = DEST; \
DEST.template triangularView<TRI>() OP; \
ref1 OP; \
ref2.template triangularView<TRI>() \
= ref1.template triangularView<TRI>(); \
VERIFY_IS_APPROX(DEST,ref2); \
\
DEST = ref3; \
ref3 = ref2; \
ref3.diagonal() = DEST.diagonal(); \
DEST.template triangularView<TRI|ZeroDiag>() OP; \
VERIFY_IS_APPROX(DEST,ref3); \
}
template<typename Scalar> void mmtr(int size)
{
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixColMaj;
typedef Matrix<Scalar,Dynamic,Dynamic,RowMajor> MatrixRowMaj;
DenseIndex othersize = internal::random<DenseIndex>(1,200);
MatrixColMaj matc = MatrixColMaj::Zero(size, size);
MatrixRowMaj matr = MatrixRowMaj::Zero(size, size);
MatrixColMaj ref1(size, size), ref2(size, size), ref3(size,size);
MatrixColMaj soc(size,othersize); soc.setRandom();
MatrixColMaj osc(othersize,size); osc.setRandom();
MatrixRowMaj sor(size,othersize); sor.setRandom();
MatrixRowMaj osr(othersize,size); osr.setRandom();
MatrixColMaj sqc(size,size); sqc.setRandom();
MatrixRowMaj sqr(size,size); sqr.setRandom();
Scalar s = internal::random<Scalar>();
CHECK_MMTR(matc, Lower, = s*soc*sor.adjoint());
CHECK_MMTR(matc, Upper, = s*(soc*soc.adjoint()));
CHECK_MMTR(matr, Lower, = s*soc*soc.adjoint());
CHECK_MMTR(matr, Upper, = soc*(s*sor.adjoint()));
CHECK_MMTR(matc, Lower, += s*soc*soc.adjoint());
CHECK_MMTR(matc, Upper, += s*(soc*sor.transpose()));
CHECK_MMTR(matr, Lower, += s*sor*soc.adjoint());
CHECK_MMTR(matr, Upper, += soc*(s*soc.adjoint()));
CHECK_MMTR(matc, Lower, -= s*soc*soc.adjoint());
CHECK_MMTR(matc, Upper, -= s*(osc.transpose()*osc.conjugate()));
CHECK_MMTR(matr, Lower, -= s*soc*soc.adjoint());
CHECK_MMTR(matr, Upper, -= soc*(s*soc.adjoint()));
CHECK_MMTR(matc, Lower, -= s*sqr*sqc.template triangularView<Upper>());
CHECK_MMTR(matc, Upper, = s*sqc*sqr.template triangularView<Upper>());
CHECK_MMTR(matc, Lower, += s*sqr*sqc.template triangularView<Lower>());
CHECK_MMTR(matc, Upper, = s*sqc*sqc.template triangularView<Lower>());
CHECK_MMTR(matc, Lower, = (s*sqr).template triangularView<Upper>()*sqc);
CHECK_MMTR(matc, Upper, -= (s*sqc).template triangularView<Upper>()*sqc);
CHECK_MMTR(matc, Lower, = (s*sqr).template triangularView<Lower>()*sqc);
CHECK_MMTR(matc, Upper, += (s*sqc).template triangularView<Lower>()*sqc);
// check aliasing
ref2 = ref1 = matc;
ref1 = sqc.adjoint() * matc * sqc;
ref2.template triangularView<Upper>() = ref1.template triangularView<Upper>();
matc.template triangularView<Upper>() = sqc.adjoint() * matc * sqc;
VERIFY_IS_APPROX(matc, ref2);
ref2 = ref1 = matc;
ref1 = sqc * matc * sqc.adjoint();
ref2.template triangularView<Lower>() = ref1.template triangularView<Lower>();
matc.template triangularView<Lower>() = sqc * matc * sqc.adjoint();
VERIFY_IS_APPROX(matc, ref2);
}
EIGEN_DECLARE_TEST(product_mmtr)
{
for(int i = 0; i < g_repeat ; i++)
{
CALL_SUBTEST_1((mmtr<float>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2((mmtr<double>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_3((mmtr<std::complex<float> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))));
CALL_SUBTEST_4((mmtr<std::complex<double> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))));
}
}