mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
89 lines
3.2 KiB
C++
89 lines
3.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, int size)
|
|
{
|
|
typedef typename PermutationVectorType::Scalar Scalar;
|
|
v.resize(size);
|
|
for(int i = 0; i < size; ++i) v(i) = Scalar(i);
|
|
if(size == 1) return;
|
|
for(int n = 0; n < 3 * size; ++n)
|
|
{
|
|
int i = ei_random<int>(0, size-1);
|
|
int j;
|
|
do j = ei_random<int>(0, size-1); while(j==i);
|
|
std::swap(v(i), v(j));
|
|
}
|
|
}
|
|
|
|
using namespace std;
|
|
template<typename MatrixType> void permutationmatrices(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options };
|
|
typedef PermutationMatrix<Rows> LeftPermutationType;
|
|
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
|
|
typedef PermutationMatrix<Cols> RightPermutationType;
|
|
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m_original = MatrixType::Random(rows,cols);
|
|
LeftPermutationVectorType lv;
|
|
randomPermutationVector(lv, rows);
|
|
LeftPermutationType lp(lv);
|
|
RightPermutationVectorType rv;
|
|
randomPermutationVector(rv, cols);
|
|
RightPermutationType rp(rv);
|
|
MatrixType m_permuted = lp * m_original * rp;
|
|
|
|
for (int i=0; i<rows; i++)
|
|
for (int j=0; j<cols; j++)
|
|
VERIFY_IS_APPROX(m_original(lv(i),j), m_permuted(i,rv(j)));
|
|
|
|
Matrix<Scalar,Rows,Rows> lm(lp);
|
|
Matrix<Scalar,Cols,Cols> rm(rp);
|
|
|
|
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
|
|
}
|
|
|
|
void test_permutationmatrices()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( permutationmatrices(Matrix3f()) );
|
|
CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) );
|
|
CALL_SUBTEST_4( permutationmatrices(Matrix4d()) );
|
|
CALL_SUBTEST_5( permutationmatrices(Matrix<double,4,6>()) );
|
|
CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) );
|
|
CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) );
|
|
}
|
|
}
|