eigen/test/permutationmatrices.cpp
2009-11-16 04:20:13 +01:00

89 lines
3.2 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename PermutationVectorType>
void randomPermutationVector(PermutationVectorType& v, int size)
{
typedef typename PermutationVectorType::Scalar Scalar;
v.resize(size);
for(int i = 0; i < size; ++i) v(i) = Scalar(i);
if(size == 1) return;
for(int n = 0; n < 3 * size; ++n)
{
int i = ei_random<int>(0, size-1);
int j;
do j = ei_random<int>(0, size-1); while(j==i);
std::swap(v(i), v(j));
}
}
using namespace std;
template<typename MatrixType> void permutationmatrices(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options };
typedef PermutationMatrix<Rows> LeftPermutationType;
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
typedef PermutationMatrix<Cols> RightPermutationType;
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m_original = MatrixType::Random(rows,cols);
LeftPermutationVectorType lv;
randomPermutationVector(lv, rows);
LeftPermutationType lp(lv);
RightPermutationVectorType rv;
randomPermutationVector(rv, cols);
RightPermutationType rp(rv);
MatrixType m_permuted = lp * m_original * rp;
for (int i=0; i<rows; i++)
for (int j=0; j<cols; j++)
VERIFY_IS_APPROX(m_original(lv(i),j), m_permuted(i,rv(j)));
Matrix<Scalar,Rows,Rows> lm(lp);
Matrix<Scalar,Cols,Cols> rm(rp);
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
}
void test_permutationmatrices()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( permutationmatrices(Matrix3f()) );
CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) );
CALL_SUBTEST_4( permutationmatrices(Matrix4d()) );
CALL_SUBTEST_5( permutationmatrices(Matrix<double,4,6>()) );
CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) );
CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) );
}
}