mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
257 lines
9.1 KiB
C++
257 lines
9.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2021 Kolja Brix <kolja.brix@rwth-aachen.de>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_RANDOM_MATRIX_HELPER
|
|
#define EIGEN_RANDOM_MATRIX_HELPER
|
|
|
|
#include <typeinfo>
|
|
#include <Eigen/QR> // required for createRandomPIMatrixOfRank and generateRandomMatrixSvs
|
|
|
|
|
|
// Forward declarations to avoid ICC warnings
|
|
#if EIGEN_COMP_ICC
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename MatrixType>
|
|
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m);
|
|
|
|
template<typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, Index size);
|
|
|
|
template<typename MatrixType>
|
|
MatrixType generateRandomUnitaryMatrix(const Index dim);
|
|
|
|
template<typename MatrixType, typename RealScalarVectorType>
|
|
void generateRandomMatrixSvs(const RealScalarVectorType &svs, const Index rows, const Index cols, MatrixType& M);
|
|
|
|
template<typename VectorType, typename RealScalar>
|
|
VectorType setupRandomSvs(const Index dim, const RealScalar max);
|
|
|
|
template<typename VectorType, typename RealScalar>
|
|
VectorType setupRangeSvs(const Index dim, const RealScalar min, const RealScalar max);
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_COMP_ICC
|
|
|
|
|
|
|
|
namespace Eigen {
|
|
|
|
/**
|
|
* Creates a random partial isometry matrix of given rank.
|
|
*
|
|
* A partial isometry is a matrix all of whose singular values are either 0 or 1.
|
|
* This is very useful to test rank-revealing algorithms.
|
|
*
|
|
* @tparam MatrixType type of random partial isometry matrix
|
|
* @param desired_rank rank requested for the random partial isometry matrix
|
|
* @param rows row dimension of requested random partial isometry matrix
|
|
* @param cols column dimension of requested random partial isometry matrix
|
|
* @param m random partial isometry matrix
|
|
*/
|
|
template<typename MatrixType>
|
|
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m)
|
|
{
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
|
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorType;
|
|
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
|
|
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
|
|
|
if(desired_rank == 0)
|
|
{
|
|
m.setZero(rows,cols);
|
|
return;
|
|
}
|
|
|
|
if(desired_rank == 1)
|
|
{
|
|
// here we normalize the vectors to get a partial isometry
|
|
m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
|
|
return;
|
|
}
|
|
|
|
MatrixAType a = MatrixAType::Random(rows,rows);
|
|
MatrixType d = MatrixType::Identity(rows,cols);
|
|
MatrixBType b = MatrixBType::Random(cols,cols);
|
|
|
|
// set the diagonal such that only desired_rank non-zero entries remain
|
|
const Index diag_size = (std::min)(d.rows(),d.cols());
|
|
if(diag_size != desired_rank)
|
|
d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
|
|
|
|
HouseholderQR<MatrixAType> qra(a);
|
|
HouseholderQR<MatrixBType> qrb(b);
|
|
m = qra.householderQ() * d * qrb.householderQ();
|
|
}
|
|
|
|
/**
|
|
* Generate random permutation vector.
|
|
*
|
|
* @tparam PermutationVectorType type of vector used to store permutation
|
|
* @param v permutation vector
|
|
* @param size length of permutation vector
|
|
*/
|
|
template<typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, Index size)
|
|
{
|
|
typedef typename PermutationVectorType::Scalar Scalar;
|
|
v.resize(size);
|
|
for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
|
|
if(size == 1) return;
|
|
for(Index n = 0; n < 3 * size; ++n)
|
|
{
|
|
Index i = internal::random<Index>(0, size-1);
|
|
Index j;
|
|
do j = internal::random<Index>(0, size-1); while(j==i);
|
|
std::swap(v(i), v(j));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate a random unitary matrix of prescribed dimension.
|
|
*
|
|
* The algorithm is using a random Householder sequence to produce
|
|
* a random unitary matrix.
|
|
*
|
|
* @tparam MatrixType type of matrix to generate
|
|
* @param dim row and column dimension of the requested square matrix
|
|
* @return random unitary matrix
|
|
*/
|
|
template<typename MatrixType>
|
|
MatrixType generateRandomUnitaryMatrix(const Index dim)
|
|
{
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorType;
|
|
|
|
MatrixType v = MatrixType::Identity(dim, dim);
|
|
VectorType h = VectorType::Zero(dim);
|
|
for (Index i = 0; i < dim; ++i)
|
|
{
|
|
v.col(i).tail(dim - i - 1) = VectorType::Random(dim - i - 1);
|
|
h(i) = 2 / v.col(i).tail(dim - i).squaredNorm();
|
|
}
|
|
|
|
const Eigen::HouseholderSequence<MatrixType, VectorType> HSeq(v, h);
|
|
return MatrixType(HSeq);
|
|
}
|
|
|
|
/**
|
|
* Generation of random matrix with prescribed singular values.
|
|
*
|
|
* We generate random matrices with given singular values by setting up
|
|
* a singular value decomposition. By choosing the number of zeros as
|
|
* singular values we can specify the rank of the matrix.
|
|
* Moreover, we also control its spectral norm, which is the largest
|
|
* singular value, as well as its condition number with respect to the
|
|
* l2-norm, which is the quotient of the largest and smallest singular
|
|
* value.
|
|
*
|
|
* Reference: For details on the method see e.g. Section 8.1 (pp. 62 f) in
|
|
*
|
|
* C. C. Paige, M. A. Saunders,
|
|
* LSQR: An algorithm for sparse linear equations and sparse least squares.
|
|
* ACM Transactions on Mathematical Software 8(1), pp. 43-71, 1982.
|
|
* https://web.stanford.edu/group/SOL/software/lsqr/lsqr-toms82a.pdf
|
|
*
|
|
* and also the LSQR webpage https://web.stanford.edu/group/SOL/software/lsqr/.
|
|
*
|
|
* @tparam MatrixType matrix type to generate
|
|
* @tparam RealScalarVectorType vector type with real entries used for singular values
|
|
* @param svs vector of desired singular values
|
|
* @param rows row dimension of requested random matrix
|
|
* @param cols column dimension of requested random matrix
|
|
* @param M generated matrix with prescribed singular values
|
|
*/
|
|
template<typename MatrixType, typename RealScalarVectorType>
|
|
void generateRandomMatrixSvs(const RealScalarVectorType &svs, const Index rows, const Index cols, MatrixType& M)
|
|
{
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
|
|
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
|
|
|
const Index min_dim = (std::min)(rows, cols);
|
|
|
|
const MatrixAType U = generateRandomUnitaryMatrix<MatrixAType>(rows);
|
|
const MatrixBType V = generateRandomUnitaryMatrix<MatrixBType>(cols);
|
|
|
|
M = U.block(0, 0, rows, min_dim) * svs.asDiagonal() * V.block(0, 0, cols, min_dim).transpose();
|
|
}
|
|
|
|
/**
|
|
* Setup a vector of random singular values with prescribed upper limit.
|
|
* For use with generateRandomMatrixSvs().
|
|
*
|
|
* Singular values are non-negative real values. By convention (to be consistent with
|
|
* singular value decomposition) we sort them in decreasing order.
|
|
*
|
|
* This strategy produces random singular values in the range [0, max], in particular
|
|
* the singular values can be zero or arbitrarily close to zero.
|
|
*
|
|
* @tparam VectorType vector type with real entries used for singular values
|
|
* @tparam RealScalar data type used for real entry
|
|
* @param dim number of singular values to generate
|
|
* @param max upper bound for singular values
|
|
* @return vector of singular values
|
|
*/
|
|
template<typename VectorType, typename RealScalar>
|
|
VectorType setupRandomSvs(const Index dim, const RealScalar max)
|
|
{
|
|
VectorType svs = max / RealScalar(2) * (VectorType::Random(dim) + VectorType::Ones(dim));
|
|
std::sort(svs.begin(), svs.end(), std::greater<RealScalar>());
|
|
return svs;
|
|
}
|
|
|
|
/**
|
|
* Setup a vector of random singular values with prescribed range.
|
|
* For use with generateRandomMatrixSvs().
|
|
*
|
|
* Singular values are non-negative real values. By convention (to be consistent with
|
|
* singular value decomposition) we sort them in decreasing order.
|
|
*
|
|
* For dim > 1 this strategy generates a vector with largest entry max, smallest entry
|
|
* min, and remaining entries in the range [min, max]. For dim == 1 the only entry is
|
|
* min.
|
|
*
|
|
* @tparam VectorType vector type with real entries used for singular values
|
|
* @tparam RealScalar data type used for real entry
|
|
* @param dim number of singular values to generate
|
|
* @param min smallest singular value to use
|
|
* @param max largest singular value to use
|
|
* @return vector of singular values
|
|
*/
|
|
template<typename VectorType, typename RealScalar>
|
|
VectorType setupRangeSvs(const Index dim, const RealScalar min, const RealScalar max)
|
|
{
|
|
VectorType svs = VectorType::Random(dim);
|
|
if(dim == 0)
|
|
return svs;
|
|
if(dim == 1)
|
|
{
|
|
svs(0) = min;
|
|
return svs;
|
|
}
|
|
std::sort(svs.begin(), svs.end(), std::greater<RealScalar>());
|
|
|
|
// scale to range [min, max]
|
|
const RealScalar c_min = svs(dim - 1), c_max = svs(0);
|
|
svs = (svs - VectorType::Constant(dim, c_min)) / (c_max - c_min);
|
|
return min * (VectorType::Ones(dim) - svs) + max * svs;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_RANDOM_MATRIX_HELPER
|