eigen/test/svd_common.h
Rasmus Munk Larsen 5bbc9cea93 Add an info() method to the SVDBase class to make it possible to tell the user that the computation failed, possibly due to invalid input.
Make Jacobi and divide-and-conquer fail fast and return info() == InvalidInput if the matrix contains NaN or +/-Inf.
2021-03-31 21:09:19 +00:00

513 lines
19 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SVD_DEFAULT
#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_FOR_MIN_NORM
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif
#include "svd_fill.h"
#include "solverbase.h"
// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
// The SVD must have already been computed.
template<typename SvdType, typename MatrixType>
void svd_check_full(const MatrixType& m, const SvdType& svd)
{
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
MatrixType sigma = MatrixType::Zero(rows,cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
RealScalar scaling = m.cwiseAbs().maxCoeff();
if(scaling<(std::numeric_limits<RealScalar>::min)())
{
VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
}
else
{
VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint());
}
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
}
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template<typename SvdType, typename MatrixType>
void svd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const SvdType& referenceSvd)
{
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
RealScalar prec = test_precision<RealScalar>();
SvdType svd(m, computationOptions);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if(computationOptions & (ComputeFullV|ComputeThinV))
{
VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
}
if(computationOptions & (ComputeFullU|ComputeThinU))
{
VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
}
// The following checks are not critical.
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
// and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
++g_test_level;
if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
--g_test_level;
}
//
template<typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m, unsigned int computationOptions)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SvdType svd(m, computationOptions);
if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(2e-4);
SolutionType x = svd.solve(rhs);
RealScalar residual = (m*x-rhs).norm();
RealScalar rhs_norm = rhs.norm();
if(!test_isMuchSmallerThan(residual,rhs.norm()))
{
// ^^^ If the residual is very small, then we have an exact solution, so we are already good.
// evaluate normal equation which works also for least-squares solutions
if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
{
using std::sqrt;
// This test is not stable with single precision.
// This is probably because squaring m signicantly affects the precision.
if(internal::is_same<RealScalar,float>::value) ++g_test_level;
VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
if(internal::is_same<RealScalar,float>::value) --g_test_level;
}
// Check that there is no significantly better solution in the neighborhood of x
for(Index k=0;k<x.rows();++k)
{
using std::abs;
SolutionType y(x);
y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k);
RealScalar residual_y = (m*y-rhs).norm();
VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) ++g_test_level;
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) --g_test_level;
y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k);
residual_y = (m*y-rhs).norm();
VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) ++g_test_level;
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) --g_test_level;
}
}
}
// check minimal norm solutions, the inoput matrix m is only used to recover problem size
template<typename MatrixType>
void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
{
typedef typename MatrixType::Scalar Scalar;
Index cols = m.cols();
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
// generate a full-rank m x n problem with m<n
enum {
RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
};
typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
MatrixType2 m2(rank,cols);
int guard = 0;
do {
m2.setRandom();
} while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
VERIFY(guard<10);
RhsType2 rhs2 = RhsType2::Random(rank);
// use QR to find a reference minimal norm solution
HouseholderQR<MatrixType2T> qr(m2.adjoint());
Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
tmp.conservativeResize(cols);
tmp.tail(cols-rank).setZero();
SolutionType x21 = qr.householderQ() * tmp;
// now check with SVD
SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
SolutionType x22 = svd2.solve(rhs2);
VERIFY_IS_APPROX(m2*x21, rhs2);
VERIFY_IS_APPROX(m2*x22, rhs2);
VERIFY_IS_APPROX(x21, x22);
// Now check with a rank deficient matrix
typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
MatrixType3 m3 = C * m2;
RhsType3 rhs3 = C * rhs2;
SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
SolutionType x3 = svd3.solve(rhs3);
VERIFY_IS_APPROX(m3*x3, rhs3);
VERIFY_IS_APPROX(m3*x21, rhs3);
VERIFY_IS_APPROX(m2*x3, rhs2);
VERIFY_IS_APPROX(x21, x3);
}
template<typename MatrixType, typename SolverType>
void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
Index rows, cols, cols2;
rows = m.rows();
cols = m.cols();
if(MatrixType::ColsAtCompileTime==Dynamic)
{
cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
}
else
{
cols2 = cols;
}
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType;
check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
}
// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
template<typename SvdType, typename MatrixType>
void svd_test_all_computation_options(const MatrixType& m, bool full_only)
{
// if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
// return;
STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value ));
SvdType fullSvd(m, ComputeFullU|ComputeFullV);
CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
#if defined __INTEL_COMPILER
// remark #111: statement is unreachable
#pragma warning disable 111
#endif
svd_test_solvers(m, fullSvd);
if(full_only)
return;
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU , fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
// test reconstruction
Index diagSize = (std::min)(m.rows(), m.cols());
SvdType svd(m, ComputeThinU | ComputeThinV);
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
}
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
// This function verifies we don't iterate infinitely on nan/inf values,
// and that info() returns InvalidInput.
template<typename SvdType, typename MatrixType>
void svd_inf_nan()
{
SvdType svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
VERIFY(svd.info() == InvalidInput);
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
VERIFY(nan != nan);
svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
VERIFY(svd.info() == InvalidInput);
MatrixType m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
svd.compute(m, ComputeFullU | ComputeFullV);
VERIFY(svd.info() == InvalidInput);
m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
svd.compute(m, ComputeFullU | ComputeFullV);
VERIFY(svd.info() == InvalidInput);
// regression test for bug 791
m.resize(3,3);
m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
0, -0.5, 0,
nan, 0, 0;
svd.compute(m, ComputeFullU | ComputeFullV);
VERIFY(svd.info() == InvalidInput);
m.resize(4,4);
m << 1, 0, 0, 0,
0, 3, 1, 2e-308,
1, 0, 1, nan,
0, nan, nan, 0;
svd.compute(m, ComputeFullU | ComputeFullV);
VERIFY(svd.info() == InvalidInput);
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
template<typename>
void svd_underoverflow()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M;
M << -7.90884e-313, -4.94e-324,
0, 5.60844e-313;
SVD_DEFAULT(Matrix2d) svd;
svd.compute(M,ComputeFullU|ComputeFullV);
CALL_SUBTEST( svd_check_full(M,svd) );
// Check all 2x2 matrices made with the following coefficients:
VectorXd value_set(9);
value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
Array4i id(0,0,0,0);
int k = 0;
do
{
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
svd.compute(M,ComputeFullU|ComputeFullV);
CALL_SUBTEST( svd_check_full(M,svd) );
id(k)++;
if(id(k)>=value_set.size())
{
while(k<3 && id(k)>=value_set.size()) id(++k)++;
id.head(k).setZero();
k=0;
}
} while((id<int(value_set.size())).all());
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
// Check for overflow:
Matrix3d M3;
M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307,
3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
-8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
SVD_DEFAULT(Matrix3d) svd3;
svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
CALL_SUBTEST( svd_check_full(M3,svd3) );
}
// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
template<typename MatrixType>
void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
{
MatrixType M;
VectorXd value_set(3);
value_set << 0, 1, -1;
Array4i id(0,0,0,0);
int k = 0;
do
{
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
cb(M,false);
id(k)++;
if(id(k)>=value_set.size())
{
while(k<3 && id(k)>=value_set.size()) id(++k)++;
id.head(k).setZero();
k=0;
}
} while((id<int(value_set.size())).all());
}
template<typename>
void svd_preallocate()
{
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
SVD_DEFAULT(MatrixXf) svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
SVD_DEFAULT(MatrixXf) svd2(3,3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_RAISES_ASSERT(svd2.matrixU());
VERIFY_RAISES_ASSERT(svd2.matrixV());
svd2.compute(m, ComputeFullU | ComputeFullV);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m, ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(true);
}
template<typename SvdType,typename MatrixType>
void svd_verify_assert(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
SvdType svd;
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
svd.compute(a, 0);
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.matrixV())
svd.singularValues();
VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic)
{
svd.compute(a, ComputeThinU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
}
else
{
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
}
}
#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM