eigen/bench/btl/generic_bench/timers/x86_timer.hh
Gael Guennebaud 28539e7597 imported a reworked version of BTL (Benchmark for Templated Libraries).
the modifications to initial code follow:
* changed build system from plain makefiles to cmake
* added eigen2 (4 versions: vec/novec and fixed/dynamic), GMM++, MTL4 interfaces
* added "transposed matrix * vector" product action
* updated blitz interface to use condensed products instead of hand coded loops
* removed some deprecated interfaces
* changed default storage order to column major for all libraries
* new generic bench timer strategy which is supposed to be more accurate
* various code clean-up
2008-07-09 14:04:48 +00:00

247 lines
5.2 KiB
C++
Raw Blame History

//=====================================================
// File : x86_timer.hh
// Author : L. Plagne <laurent.plagne@edf.fr)>
// Copyright (C) EDF R&D, mar d<>c 3 18:59:35 CET 2002
//=====================================================
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
#ifndef _X86_TIMER_HH
#define _X86_TIMER_HH
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include <sys/times.h>
//#include "system_time.h"
#define u32 unsigned int
#include <asm/msr.h>
#include "utilities.h"
#include <map>
#include <fstream>
#include <string>
#include <iostream>
// frequence de la becanne en Hz
//#define FREQUENCY 648000000
//#define FREQUENCY 1400000000
#define FREQUENCY 1695000000
using namespace std;
class X86_Timer {
public :
X86_Timer( void ):_frequency(FREQUENCY),_nb_sample(0)
{
MESSAGE("X86_Timer Default Ctor");
}
inline void start( void ){
rdtsc(_click_start.n32[0],_click_start.n32[1]);
}
inline void stop( void ){
rdtsc(_click_stop.n32[0],_click_stop.n32[1]);
}
inline double frequency( void ){
return _frequency;
}
double get_elapsed_time_in_second( void ){
return (_click_stop.n64-_click_start.n64)/double(FREQUENCY);
}
unsigned long long get_click( void ){
return (_click_stop.n64-_click_start.n64);
}
inline void find_frequency( void ){
time_t initial, final;
int dummy=2;
initial = time(0);
start();
do {
dummy+=2;
}
while(time(0)==initial);
// On est au debut d'un cycle d'une seconde !!!
initial = time(0);
start();
do {
dummy+=2;
}
while(time(0)==initial);
final=time(0);
stop();
// INFOS("fine grained time : "<< get_elapsed_time_in_second());
// INFOS("coarse grained time : "<< final-initial);
_frequency=_frequency*get_elapsed_time_in_second()/double(final-initial);
/// INFOS("CPU frequency : "<< _frequency);
}
void add_get_click( void ){
_nb_sample++;
_counted_clicks[get_click()]++;
fill_history_clicks();
}
void dump_statistics(string filemane){
ofstream outfile (filemane.c_str(),ios::out) ;
std::map<unsigned long long , unsigned long long>::iterator itr;
for(itr=_counted_clicks.begin() ; itr!=_counted_clicks.end() ; itr++)
{
outfile << (*itr).first << " " << (*itr).second << endl ;
}
outfile.close();
}
void dump_history(string filemane){
ofstream outfile (filemane.c_str(),ios::out) ;
for(int i=0 ; i<_history_mean_clicks.size() ; i++)
{
outfile << i << " "
<< _history_mean_clicks[i] << " "
<< _history_shortest_clicks[i] << " "
<< _history_most_occured_clicks[i] << endl ;
}
outfile.close();
}
double get_mean_clicks( void ){
std::map<unsigned long long,unsigned long long>::iterator itr;
unsigned long long mean_clicks=0;
for(itr=_counted_clicks.begin() ; itr!=_counted_clicks.end() ; itr++)
{
mean_clicks+=(*itr).second*(*itr).first;
}
return mean_clicks/double(_nb_sample);
}
double get_shortest_clicks( void ){
return double((*_counted_clicks.begin()).first);
}
void fill_history_clicks( void ){
_history_mean_clicks.push_back(get_mean_clicks());
_history_shortest_clicks.push_back(get_shortest_clicks());
_history_most_occured_clicks.push_back(get_most_occured_clicks());
}
double get_most_occured_clicks( void ){
unsigned long long moc=0;
unsigned long long max_occurence=0;
std::map<unsigned long long,unsigned long long>::iterator itr;
for(itr=_counted_clicks.begin() ; itr!=_counted_clicks.end() ; itr++)
{
if (max_occurence<=(*itr).second){
max_occurence=(*itr).second;
moc=(*itr).first;
}
}
return double(moc);
}
void clear( void )
{
_counted_clicks.clear();
_history_mean_clicks.clear();
_history_shortest_clicks.clear();
_history_most_occured_clicks.clear();
_nb_sample=0;
}
private :
union
{
unsigned long int n32[2] ;
unsigned long long n64 ;
} _click_start;
union
{
unsigned long int n32[2] ;
unsigned long long n64 ;
} _click_stop;
double _frequency ;
map<unsigned long long,unsigned long long> _counted_clicks;
vector<double> _history_mean_clicks;
vector<double> _history_shortest_clicks;
vector<double> _history_most_occured_clicks;
unsigned long long _nb_sample;
};
#endif