mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
613 lines
26 KiB
C++
613 lines
26 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename ArrayType> void array(const ArrayType& m)
|
|
{
|
|
typedef typename ArrayType::Index Index;
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
|
|
typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2 = ArrayType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
ArrayType m4 = m1; // copy constructor
|
|
VERIFY_IS_APPROX(m1, m4);
|
|
|
|
ColVectorType cv1 = ColVectorType::Random(rows);
|
|
RowVectorType rv1 = RowVectorType::Random(cols);
|
|
|
|
Scalar s1 = internal::random<Scalar>(),
|
|
s2 = internal::random<Scalar>();
|
|
|
|
// scalar addition
|
|
VERIFY_IS_APPROX(m1 + s1, s1 + m1);
|
|
VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
|
|
VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
|
|
VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
|
|
VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
|
|
VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
|
|
m3 = m1;
|
|
m3 += s2;
|
|
VERIFY_IS_APPROX(m3, m1 + s2);
|
|
m3 = m1;
|
|
m3 -= s1;
|
|
VERIFY_IS_APPROX(m3, m1 - s1);
|
|
|
|
// scalar operators via Maps
|
|
m3 = m1;
|
|
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
|
|
VERIFY_IS_APPROX(m1, m3 - m2);
|
|
|
|
m3 = m1;
|
|
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
|
|
VERIFY_IS_APPROX(m1, m3 + m2);
|
|
|
|
m3 = m1;
|
|
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
|
|
VERIFY_IS_APPROX(m1, m3 * m2);
|
|
|
|
m3 = m1;
|
|
m2 = ArrayType::Random(rows,cols);
|
|
m2 = (m2==0).select(1,m2);
|
|
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
|
|
VERIFY_IS_APPROX(m1, m3 / m2);
|
|
|
|
// reductions
|
|
VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
|
|
VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
|
|
using std::abs;
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
|
|
if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
|
|
VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
|
|
VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
|
|
|
|
// vector-wise ops
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
|
|
|
|
// Conversion from scalar
|
|
VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
|
|
VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1));
|
|
VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1));
|
|
typedef Array<Scalar,
|
|
ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
|
|
ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
|
|
ArrayType::Options> FixedArrayType;
|
|
FixedArrayType f1(s1);
|
|
VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
|
|
FixedArrayType f2(numext::real(s1));
|
|
VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
|
|
FixedArrayType f3((int)100*numext::real(s1));
|
|
VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
|
|
f1.setRandom();
|
|
FixedArrayType f4(f1.data());
|
|
VERIFY_IS_APPROX(f4, f1);
|
|
|
|
// Check possible conflicts with 1D ctor
|
|
typedef Array<Scalar, Dynamic, 1> OneDArrayType;
|
|
OneDArrayType o1(rows);
|
|
VERIFY(o1.size()==rows);
|
|
OneDArrayType o4((int)rows);
|
|
VERIFY(o4.size()==rows);
|
|
}
|
|
|
|
template<typename ArrayType> void comparisons(const ArrayType& m)
|
|
{
|
|
using std::abs;
|
|
typedef typename ArrayType::Index Index;
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
Index r = internal::random<Index>(0, rows-1),
|
|
c = internal::random<Index>(0, cols-1);
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2 = ArrayType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
m4 = m1;
|
|
|
|
m4 = (m4.abs()==Scalar(0)).select(1,m4);
|
|
|
|
VERIFY(((m1 + Scalar(1)) > m1).all());
|
|
VERIFY(((m1 - Scalar(1)) < m1).all());
|
|
if (rows*cols>1)
|
|
{
|
|
m3 = m1;
|
|
m3(r,c) += 1;
|
|
VERIFY(! (m1 < m3).all() );
|
|
VERIFY(! (m1 > m3).all() );
|
|
}
|
|
VERIFY(!(m1 > m2 && m1 < m2).any());
|
|
VERIFY((m1 <= m2 || m1 >= m2).all());
|
|
|
|
// comparisons array to scalar
|
|
VERIFY( (m1 != (m1(r,c)+1) ).any() );
|
|
VERIFY( (m1 > (m1(r,c)-1) ).any() );
|
|
VERIFY( (m1 < (m1(r,c)+1) ).any() );
|
|
VERIFY( (m1 == m1(r,c) ).any() );
|
|
|
|
// comparisons scalar to array
|
|
VERIFY( ( (m1(r,c)+1) != m1).any() );
|
|
VERIFY( ( (m1(r,c)-1) < m1).any() );
|
|
VERIFY( ( (m1(r,c)+1) > m1).any() );
|
|
VERIFY( ( m1(r,c) == m1).any() );
|
|
|
|
// test Select
|
|
VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
|
|
VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
|
|
Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
|
|
for (int j=0; j<cols; ++j)
|
|
for (int i=0; i<rows; ++i)
|
|
m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
|
|
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
|
|
.select(ArrayType::Zero(rows,cols),m1), m3);
|
|
// shorter versions:
|
|
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
|
|
.select(0,m1), m3);
|
|
VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
|
|
.select(m1,0), m3);
|
|
// even shorter version:
|
|
VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
|
|
|
|
// count
|
|
VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
|
|
|
|
// and/or
|
|
VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
|
|
VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
|
|
RealScalar a = m1.abs().mean();
|
|
VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
|
|
|
|
typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;
|
|
|
|
// TODO allows colwise/rowwise for array
|
|
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
|
|
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
|
|
}
|
|
|
|
template<typename ArrayType> void array_real(const ArrayType& m)
|
|
{
|
|
using std::abs;
|
|
using std::sqrt;
|
|
typedef typename ArrayType::Index Index;
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2 = ArrayType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
m4 = m1;
|
|
|
|
m4 = (m4.abs()==Scalar(0)).select(1,m4);
|
|
|
|
Scalar s1 = internal::random<Scalar>();
|
|
|
|
// these tests are mostly to check possible compilation issues with free-functions.
|
|
VERIFY_IS_APPROX(m1.sin(), sin(m1));
|
|
VERIFY_IS_APPROX(m1.cos(), cos(m1));
|
|
VERIFY_IS_APPROX(m1.tan(), tan(m1));
|
|
VERIFY_IS_APPROX(m1.asin(), asin(m1));
|
|
VERIFY_IS_APPROX(m1.acos(), acos(m1));
|
|
VERIFY_IS_APPROX(m1.atan(), atan(m1));
|
|
VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
|
|
VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
|
|
VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
|
|
#ifdef EIGEN_HAS_C99_MATH
|
|
VERIFY_IS_APPROX(m1.lgamma(), lgamma(m1));
|
|
VERIFY_IS_APPROX(m1.digamma(), digamma(m1));
|
|
VERIFY_IS_APPROX(m1.erf(), erf(m1));
|
|
VERIFY_IS_APPROX(m1.erfc(), erfc(m1));
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
VERIFY_IS_APPROX(m1.arg(), arg(m1));
|
|
VERIFY_IS_APPROX(m1.round(), round(m1));
|
|
VERIFY_IS_APPROX(m1.floor(), floor(m1));
|
|
VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
|
|
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
|
|
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
|
|
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
|
|
VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
|
|
VERIFY_IS_APPROX(m1.abs(), abs(m1));
|
|
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
|
|
VERIFY_IS_APPROX(m1.square(), square(m1));
|
|
VERIFY_IS_APPROX(m1.cube(), cube(m1));
|
|
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
|
|
VERIFY_IS_APPROX(m1.sign(), sign(m1));
|
|
|
|
|
|
// avoid NaNs with abs() so verification doesn't fail
|
|
m3 = m1.abs();
|
|
VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1)));
|
|
VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1)));
|
|
VERIFY_IS_APPROX(m3.log(), log(m3));
|
|
VERIFY_IS_APPROX(m3.log10(), log10(m3));
|
|
|
|
|
|
VERIFY((!(m1>m2) == (m1<=m2)).all());
|
|
|
|
VERIFY_IS_APPROX(sin(m1.asin()), m1);
|
|
VERIFY_IS_APPROX(cos(m1.acos()), m1);
|
|
VERIFY_IS_APPROX(tan(m1.atan()), m1);
|
|
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
|
|
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
|
|
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
|
|
VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0));
|
|
VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
|
|
VERIFY((Eigen::isnan)((m1*0.0)/0.0).all());
|
|
VERIFY((Eigen::isinf)(m4/0.0).all());
|
|
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all());
|
|
VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
|
|
VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
|
|
VERIFY_IS_APPROX(m3, sqrt(abs2(m1)));
|
|
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
|
|
VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
|
|
VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);
|
|
|
|
VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
|
|
VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
|
|
if(!NumTraits<Scalar>::IsComplex)
|
|
VERIFY_IS_APPROX(numext::real(m1), m1);
|
|
|
|
// shift argument of logarithm so that it is not zero
|
|
Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
|
|
VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));
|
|
|
|
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
|
|
VERIFY_IS_APPROX(m1.exp(), exp(m1));
|
|
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
|
|
|
|
VERIFY_IS_APPROX(m1.pow(2), m1.square());
|
|
VERIFY_IS_APPROX(pow(m1,2), m1.square());
|
|
VERIFY_IS_APPROX(m1.pow(3), m1.cube());
|
|
VERIFY_IS_APPROX(pow(m1,3), m1.cube());
|
|
VERIFY_IS_APPROX((-m1).pow(3), -m1.cube());
|
|
VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());
|
|
|
|
ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
|
|
VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
|
|
VERIFY_IS_APPROX(m1.pow(exponents), m1.square());
|
|
VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square());
|
|
VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square());
|
|
VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
|
|
VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
|
|
VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
|
|
|
|
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
|
|
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
|
|
|
|
VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
|
|
VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
|
|
|
|
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
|
|
|
|
// scalar by array division
|
|
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
|
s1 += Scalar(tiny);
|
|
m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
|
|
VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
|
|
|
|
#ifdef EIGEN_HAS_C99_MATH
|
|
// check special functions (comparing against numpy implementation)
|
|
if (!NumTraits<Scalar>::IsComplex) {
|
|
VERIFY_IS_APPROX(numext::digamma(Scalar(1)), RealScalar(-0.5772156649015329));
|
|
VERIFY_IS_APPROX(numext::digamma(Scalar(1.5)), RealScalar(0.03648997397857645));
|
|
VERIFY_IS_APPROX(numext::digamma(Scalar(4)), RealScalar(1.2561176684318));
|
|
VERIFY_IS_APPROX(numext::digamma(Scalar(-10.5)), RealScalar(2.398239129535781));
|
|
VERIFY_IS_APPROX(numext::digamma(Scalar(10000.5)), RealScalar(9.210340372392849));
|
|
VERIFY_IS_EQUAL(numext::digamma(Scalar(0)),
|
|
std::numeric_limits<RealScalar>::infinity());
|
|
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
|
|
std::numeric_limits<RealScalar>::infinity());
|
|
|
|
// Check the zeta function against scipy.special.zeta
|
|
VERIFY_IS_APPROX(numext::zeta(Scalar(1.5), Scalar(2)), RealScalar(1.61237534869));
|
|
VERIFY_IS_APPROX(numext::zeta(Scalar(4), Scalar(1.5)), RealScalar(0.234848505667));
|
|
VERIFY_IS_APPROX(numext::zeta(Scalar(10.5), Scalar(3)), RealScalar(1.03086757337e-5));
|
|
VERIFY_IS_APPROX(numext::zeta(Scalar(10000.5), Scalar(1.0001)), RealScalar(0.367879440865));
|
|
VERIFY_IS_APPROX(numext::zeta(Scalar(3), Scalar(-2.5)), RealScalar(0.054102025820864097));
|
|
VERIFY_IS_EQUAL(numext::zeta(Scalar(1), Scalar(1.2345)), // The second scalar does not matter
|
|
std::numeric_limits<RealScalar>::infinity());
|
|
VERIFY((numext::isnan)(numext::zeta(Scalar(0.9), Scalar(1.2345)))); // The second scalar does not matter
|
|
|
|
// Check the polygamma against scipy.special.polygamma examples
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(2)), RealScalar(0.644934066848));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(3)), RealScalar(0.394934066848));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(25.5)), RealScalar(0.0399946696496));
|
|
VERIFY((numext::isnan)(numext::polygamma(Scalar(1.5), Scalar(1.2345)))); // The second scalar does not matter
|
|
|
|
// Check the polygamma function over a larger range of values
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(17), Scalar(4.7)), RealScalar(293.334565435));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(31), Scalar(11.8)), RealScalar(0.445487887616));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(28), Scalar(17.7)), RealScalar(-2.47810300902e-07));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(8), Scalar(30.2)), RealScalar(-8.29668781082e-09));
|
|
/* The following tests only pass for doubles because floats cannot handle the large values of
|
|
the gamma function.
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(42), Scalar(15.8)), RealScalar(-0.434562276666));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(147), Scalar(54.1)), RealScalar(0.567742190178));
|
|
VERIFY_IS_APPROX(numext::polygamma(Scalar(170), Scalar(64)), RealScalar(-0.0108615497927));
|
|
*/
|
|
|
|
{
|
|
// Test various propreties of igamma & igammac. These are normalized
|
|
// gamma integrals where
|
|
// igammac(a, x) = Gamma(a, x) / Gamma(a)
|
|
// igamma(a, x) = gamma(a, x) / Gamma(a)
|
|
// where Gamma and gamma are considered the standard unnormalized
|
|
// upper and lower incomplete gamma functions, respectively.
|
|
ArrayType a = m1.abs() + 2;
|
|
ArrayType x = m2.abs() + 2;
|
|
ArrayType zero = ArrayType::Zero(rows, cols);
|
|
ArrayType one = ArrayType::Constant(rows, cols, Scalar(1.0));
|
|
ArrayType a_m1 = a - one;
|
|
ArrayType Gamma_a_x = Eigen::igammac(a, x) * a.lgamma().exp();
|
|
ArrayType Gamma_a_m1_x = Eigen::igammac(a_m1, x) * a_m1.lgamma().exp();
|
|
ArrayType gamma_a_x = Eigen::igamma(a, x) * a.lgamma().exp();
|
|
ArrayType gamma_a_m1_x = Eigen::igamma(a_m1, x) * a_m1.lgamma().exp();
|
|
|
|
// Gamma(a, 0) == Gamma(a)
|
|
VERIFY_IS_APPROX(Eigen::igammac(a, zero), one);
|
|
|
|
// Gamma(a, x) + gamma(a, x) == Gamma(a)
|
|
VERIFY_IS_APPROX(Gamma_a_x + gamma_a_x, a.lgamma().exp());
|
|
|
|
// Gamma(a, x) == (a - 1) * Gamma(a-1, x) + x^(a-1) * exp(-x)
|
|
VERIFY_IS_APPROX(Gamma_a_x, (a - 1) * Gamma_a_m1_x + x.pow(a-1) * (-x).exp());
|
|
|
|
// gamma(a, x) == (a - 1) * gamma(a-1, x) - x^(a-1) * exp(-x)
|
|
VERIFY_IS_APPROX(gamma_a_x, (a - 1) * gamma_a_m1_x - x.pow(a-1) * (-x).exp());
|
|
}
|
|
|
|
// Check exact values of igamma and igammac against a third party calculation.
|
|
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
|
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
|
|
|
// location i*6+j corresponds to a_s[i], x_s[j].
|
|
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
|
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
|
|
{0.0, 0.6321205588285578, 0.7768698398515702,
|
|
0.9816843611112658, 9.999500016666262e-05, 1.0},
|
|
{0.0, 0.4275932955291202, 0.608374823728911,
|
|
0.9539882943107686, 7.522076445089201e-07, 1.0},
|
|
{0.0, 0.01898815687615381, 0.06564245437845008,
|
|
0.5665298796332909, 4.166333347221828e-18, 1.0},
|
|
{0.0, 0.9999780593618628, 0.9999899967080838,
|
|
0.9999996219837988, 0.9991370418689945, 1.0},
|
|
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
|
|
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
|
|
{1.0, 0.36787944117144233, 0.22313016014842982,
|
|
0.018315638888734182, 0.9999000049998333, 0.0},
|
|
{1.0, 0.5724067044708798, 0.3916251762710878,
|
|
0.04601170568923136, 0.9999992477923555, 0.0},
|
|
{1.0, 0.9810118431238462, 0.9343575456215499,
|
|
0.4334701203667089, 1.0, 0.0},
|
|
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
|
|
3.7801620118431334e-07, 0.0008629581310054535,
|
|
0.0},
|
|
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
|
|
for (int i = 0; i < 6; ++i) {
|
|
for (int j = 0; j < 6; ++j) {
|
|
if ((std::isnan)(igamma_s[i][j])) {
|
|
VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
|
|
} else {
|
|
VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
|
|
}
|
|
|
|
if ((std::isnan)(igammac_s[i][j])) {
|
|
VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
|
|
} else {
|
|
VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
// check inplace transpose
|
|
m3 = m1;
|
|
m3.transposeInPlace();
|
|
VERIFY_IS_APPROX(m3, m1.transpose());
|
|
m3.transposeInPlace();
|
|
VERIFY_IS_APPROX(m3, m1);
|
|
}
|
|
|
|
template<typename ArrayType> void array_complex(const ArrayType& m)
|
|
{
|
|
typedef typename ArrayType::Index Index;
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2(rows, cols),
|
|
m4 = m1;
|
|
|
|
m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real());
|
|
m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());
|
|
|
|
Array<RealScalar, -1, -1> m3(rows, cols);
|
|
|
|
for (Index i = 0; i < m.rows(); ++i)
|
|
for (Index j = 0; j < m.cols(); ++j)
|
|
m2(i,j) = sqrt(m1(i,j));
|
|
|
|
// these tests are mostly to check possible compilation issues with free-functions.
|
|
VERIFY_IS_APPROX(m1.sin(), sin(m1));
|
|
VERIFY_IS_APPROX(m1.cos(), cos(m1));
|
|
VERIFY_IS_APPROX(m1.tan(), tan(m1));
|
|
VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
|
|
VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
|
|
VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
|
|
VERIFY_IS_APPROX(m1.arg(), arg(m1));
|
|
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
|
|
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
|
|
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
|
|
VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
|
|
VERIFY_IS_APPROX(m1.log(), log(m1));
|
|
VERIFY_IS_APPROX(m1.log10(), log10(m1));
|
|
VERIFY_IS_APPROX(m1.abs(), abs(m1));
|
|
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
|
|
VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
|
|
VERIFY_IS_APPROX(m1.square(), square(m1));
|
|
VERIFY_IS_APPROX(m1.cube(), cube(m1));
|
|
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
|
|
VERIFY_IS_APPROX(m1.sign(), sign(m1));
|
|
|
|
|
|
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
|
|
VERIFY_IS_APPROX(m1.exp(), exp(m1));
|
|
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
|
|
|
|
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
|
|
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
|
|
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
|
|
|
|
for (Index i = 0; i < m.rows(); ++i)
|
|
for (Index j = 0; j < m.cols(); ++j)
|
|
m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j)));
|
|
VERIFY_IS_APPROX(arg(m1), m3);
|
|
|
|
std::complex<RealScalar> zero(0.0,0.0);
|
|
VERIFY((Eigen::isnan)(m1*zero/zero).all());
|
|
#if EIGEN_COMP_MSVC
|
|
// msvc complex division is not robust
|
|
VERIFY((Eigen::isinf)(m4/RealScalar(0)).all());
|
|
#else
|
|
#if EIGEN_COMP_CLANG
|
|
// clang's complex division is notoriously broken too
|
|
if((numext::isinf)(m4(0,0)/RealScalar(0))) {
|
|
#endif
|
|
VERIFY((Eigen::isinf)(m4/zero).all());
|
|
#if EIGEN_COMP_CLANG
|
|
}
|
|
else
|
|
{
|
|
VERIFY((Eigen::isinf)(m4.real()/zero.real()).all());
|
|
}
|
|
#endif
|
|
#endif // MSVC
|
|
|
|
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
|
|
|
|
VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
|
|
VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
|
|
VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1))));
|
|
VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
|
|
VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
|
|
|
|
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
|
|
VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);
|
|
|
|
// scalar by array division
|
|
Scalar s1 = internal::random<Scalar>();
|
|
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
|
s1 += Scalar(tiny);
|
|
m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
|
|
VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
|
|
|
|
// check inplace transpose
|
|
m2 = m1;
|
|
m2.transposeInPlace();
|
|
VERIFY_IS_APPROX(m2, m1.transpose());
|
|
m2.transposeInPlace();
|
|
VERIFY_IS_APPROX(m2, m1);
|
|
|
|
}
|
|
|
|
template<typename ArrayType> void min_max(const ArrayType& m)
|
|
{
|
|
typedef typename ArrayType::Index Index;
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols);
|
|
|
|
// min/max with array
|
|
Scalar maxM1 = m1.maxCoeff();
|
|
Scalar minM1 = m1.minCoeff();
|
|
|
|
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
|
|
VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
|
|
|
|
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
|
|
VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
|
|
|
|
// min/max with scalar input
|
|
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
|
|
VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
|
|
|
|
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
|
|
VERIFY_IS_APPROX(m1, (m1.max)( minM1));
|
|
|
|
}
|
|
|
|
void test_array()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( array(Array22f()) );
|
|
CALL_SUBTEST_3( array(Array44d()) );
|
|
CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( comparisons(Array22f()) );
|
|
CALL_SUBTEST_3( comparisons(Array44d()) );
|
|
CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( min_max(Array22f()) );
|
|
CALL_SUBTEST_3( min_max(Array44d()) );
|
|
CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( array_real(Array22f()) );
|
|
CALL_SUBTEST_3( array_real(Array44d()) );
|
|
CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
}
|
|
|
|
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
|
|
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
|
|
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
|
|
typedef CwiseUnaryOp<internal::scalar_multiple_op<double>, ArrayXd > Xpr;
|
|
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
|
|
ArrayBase<Xpr>
|
|
>::value));
|
|
}
|