mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
137 lines
5.7 KiB
C++
137 lines
5.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <fftw3.h>
|
|
#include <unsupported/Eigen/FFT>
|
|
|
|
using namespace std;
|
|
|
|
float norm(float x) {return x*x;}
|
|
double norm(double x) {return x*x;}
|
|
long double norm(long double x) {return x*x;}
|
|
|
|
template < typename T>
|
|
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
|
|
|
complex<long double> promote(float x) { return complex<long double>( x); }
|
|
complex<long double> promote(double x) { return complex<long double>( x); }
|
|
complex<long double> promote(long double x) { return complex<long double>( x); }
|
|
|
|
|
|
template <typename T1,typename T2>
|
|
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
|
|
{
|
|
long double totalpower=0;
|
|
long double difpower=0;
|
|
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
|
|
for (size_t k0=0;k0<fftbuf.size();++k0) {
|
|
complex<long double> acc = 0;
|
|
long double phinc = -2.*k0* M_PIl / timebuf.size();
|
|
for (size_t k1=0;k1<timebuf.size();++k1) {
|
|
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
|
}
|
|
totalpower += norm(acc);
|
|
complex<long double> x = promote(fftbuf[k0]);
|
|
complex<long double> dif = acc - x;
|
|
difpower += norm(dif);
|
|
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
|
|
}
|
|
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
|
return sqrt(difpower/totalpower);
|
|
}
|
|
|
|
template <typename T1,typename T2>
|
|
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
|
|
{
|
|
long double totalpower=0;
|
|
long double difpower=0;
|
|
size_t n = min( buf1.size(),buf2.size() );
|
|
for (size_t k=0;k<n;++k) {
|
|
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
|
difpower += norm(buf1[k] - buf2[k]);
|
|
}
|
|
return sqrt(difpower/totalpower);
|
|
}
|
|
|
|
template <class T>
|
|
void test_scalar(int nfft)
|
|
{
|
|
typedef typename Eigen::FFT<T>::Complex Complex;
|
|
typedef typename Eigen::FFT<T>::Scalar Scalar;
|
|
|
|
FFT<T> fft;
|
|
vector<Scalar> inbuf(nfft);
|
|
vector<Complex> outbuf;
|
|
for (int k=0;k<nfft;++k)
|
|
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
|
fft.fwd( outbuf,inbuf);
|
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
|
|
|
vector<Scalar> buf3;
|
|
fft.inv( buf3 , outbuf);
|
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
|
}
|
|
|
|
template <class T>
|
|
void test_complex(int nfft)
|
|
{
|
|
typedef typename Eigen::FFT<T>::Complex Complex;
|
|
|
|
FFT<T> fft;
|
|
|
|
vector<Complex> inbuf(nfft);
|
|
vector<Complex> outbuf;
|
|
vector<Complex> buf3;
|
|
for (int k=0;k<nfft;++k)
|
|
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
|
fft.fwd( outbuf , inbuf);
|
|
|
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
|
|
|
fft.inv( buf3 , outbuf);
|
|
|
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
|
}
|
|
|
|
void test_FFTW()
|
|
{
|
|
|
|
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
|
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
|
|
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
|
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
|
|
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
|
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
|
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
|
|
|
|
|
|
|
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
|
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
|
|
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
|
|
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
|
|
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
|
}
|