mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
85 lines
3.5 KiB
C++
85 lines
3.5 KiB
C++
#include <iostream>
|
|
#include "BenchTimer.h"
|
|
#include <Eigen/Dense>
|
|
#include <map>
|
|
#include <string>
|
|
using namespace Eigen;
|
|
|
|
std::map<std::string,Array<float,1,4> > results;
|
|
|
|
template<typename Scalar,int Size>
|
|
void bench(int id, int size = Size)
|
|
{
|
|
typedef Matrix<Scalar,Size,Size> Mat;
|
|
Mat A(size,size);
|
|
A.setRandom();
|
|
A = A*A.adjoint();
|
|
BenchTimer t_llt, t_ldlt, t_lu, t_fplu, t_qr, t_cpqr, t_cod, t_fpqr, t_jsvd, t_bdcsvd;
|
|
|
|
int tries = 3;
|
|
int rep = 1000/size;
|
|
if(rep==0) rep = 1;
|
|
// rep = rep*rep;
|
|
|
|
LLT<Mat> llt(A);
|
|
LDLT<Mat> ldlt(A);
|
|
PartialPivLU<Mat> lu(A);
|
|
FullPivLU<Mat> fplu(A);
|
|
HouseholderQR<Mat> qr(A);
|
|
ColPivHouseholderQR<Mat> cpqr(A);
|
|
CompleteOrthogonalDecomposition<Mat> cod(A);
|
|
FullPivHouseholderQR<Mat> fpqr(A);
|
|
JacobiSVD<Mat> jsvd(A.rows(),A.cols());
|
|
BDCSVD<Mat> bdcsvd(A.rows(),A.cols());
|
|
|
|
BENCH(t_llt, tries, rep, llt.compute(A));
|
|
BENCH(t_ldlt, tries, rep, ldlt.compute(A));
|
|
BENCH(t_lu, tries, rep, lu.compute(A));
|
|
BENCH(t_fplu, tries, rep, fplu.compute(A));
|
|
BENCH(t_qr, tries, rep, qr.compute(A));
|
|
BENCH(t_cpqr, tries, rep, cpqr.compute(A));
|
|
BENCH(t_cod, tries, rep, cod.compute(A));
|
|
BENCH(t_fpqr, tries, rep, fpqr.compute(A));
|
|
if(size<500) // JacobiSVD is really too slow for too large matrices
|
|
BENCH(t_jsvd, tries, rep, jsvd.compute(A,ComputeFullU|ComputeFullV));
|
|
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A,ComputeFullU|ComputeFullV));
|
|
|
|
results["LLT"][id] = t_llt.best();
|
|
results["LDLT"][id] = t_ldlt.best();
|
|
results["PartialPivLU"][id] = t_lu.best();
|
|
results["FullPivLU"][id] = t_fplu.best();
|
|
results["HouseholderQR"][id] = t_qr.best();
|
|
results["ColPivHouseholderQR"][id] = t_cpqr.best();
|
|
results["CompleteOrthogonalDecomposition"][id] = t_cod.best();
|
|
results["FullPivHouseholderQR"][id] = t_fpqr.best();
|
|
results["JacobiSVD"][id] = size<500 ? t_jsvd.best() : 0;
|
|
results["BDCSVD"][id] = t_bdcsvd.best();
|
|
}
|
|
|
|
int main()
|
|
{
|
|
const int small = 8;
|
|
const int medium = 100;
|
|
const int large = 1000;
|
|
const int xl = 4000;
|
|
|
|
bench<float,small>(0);
|
|
bench<float,Dynamic>(1,medium);
|
|
bench<float,Dynamic>(2,large);
|
|
bench<float,Dynamic>(3,xl);
|
|
|
|
IOFormat fmt(3, 0, " \t", "\n", "", "");
|
|
|
|
std::cout << "solver/size " << small << "\t" << medium << "\t" << large << "\t" << xl << "\n";
|
|
std::cout << "LLT (ms) " << (results["LLT"]/1000.).format(fmt) << "\n";
|
|
std::cout << "LDLT (%) " << (results["LDLT"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "PartialPivLU (%) " << (results["PartialPivLU"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "FullPivLU (%) " << (results["FullPivLU"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "HouseholderQR (%) " << (results["HouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "ColPivHouseholderQR (%) " << (results["ColPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "CompleteOrthogonalDecomposition (%) " << (results["CompleteOrthogonalDecomposition"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "FullPivHouseholderQR (%) " << (results["FullPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "JacobiSVD (%) " << (results["JacobiSVD"]/results["LLT"]).format(fmt) << "\n";
|
|
std::cout << "BDCSVD (%) " << (results["BDCSVD"]/results["LLT"]).format(fmt) << "\n";
|
|
}
|