eigen/bench/tensors
2016-12-22 10:37:05 -08:00
..
benchmark_main.cc Fixed the tensor benchmarks on apple devices 2016-01-28 21:08:07 -08:00
benchmark.h Updated the benchmarking code to print the number of flops processed instead of the number of bytes. 2016-01-28 16:51:40 -08:00
contraction_benchmarks_cpu.cc Added benchmarks for contraction on CPU. 2016-05-13 14:32:17 -07:00
README Partial OpenCL support via SYCL compatible with ComputeCpp CE. 2016-09-19 12:44:13 +01:00
tensor_benchmarks_cpu.cc Extended the tensor benchmark suite to support types other than floats 2016-02-23 05:28:02 +00:00
tensor_benchmarks_fp16_gpu.cu Added a benchmark to measure the performance of full reductions of 16 bit floats 2016-05-05 14:15:11 -07:00
tensor_benchmarks_gpu.cu Added benchmarks for full reduction 2016-02-29 14:57:52 -08:00
tensor_benchmarks_sycl.cc Fixed the sycl benchmarking code 2016-12-22 10:37:05 -08:00
tensor_benchmarks.h Improved the performance of tensor padding 2016-05-25 11:43:08 -07:00

The tensor benchmark suite is made of several parts.

The first part is a generic suite, in which each benchmark comes in 2 flavors: one that runs on CPU, and one that runs on GPU.

To compile the floating point CPU benchmarks, simply call:
g++ tensor_benchmarks_cpu.cc benchmark_main.cc -I ../../ -std=c++11 -O3 -DNDEBUG -pthread -mavx -o benchmarks_cpu

To compile the floating point GPU benchmarks, simply call:
nvcc tensor_benchmarks_gpu.cu benchmark_main.cc -I ../../ -std=c++11 -O2 -DNDEBUG -use_fast_math -ftz=true -arch compute_35 -o benchmarks_gpu

We also provide a version of the generic GPU tensor benchmarks that uses half floats (aka fp16) instead of regular floats. To compile these benchmarks, simply call the command line below. You'll need a recent GPU that supports compute capability 5.3 or higher to run them and nvcc 7.5 or higher to compile the code.
nvcc tensor_benchmarks_fp16_gpu.cu benchmark_main.cc -I ../../ -std=c++11 -O2 -DNDEBUG -use_fast_math -ftz=true -arch compute_53 -o benchmarks_fp16_gpu

last but not least, we also provide a suite of benchmarks to measure the scalability of the contraction code on CPU. To compile these benchmarks, call
g++ contraction_benchmarks_cpu.cc benchmark_main.cc -I ../../ -std=c++11 -O3 -DNDEBUG -pthread -mavx -o benchmarks_cpu

To compile the benchmark for SYCL, using ComputeCpp you currently need 2 passes (only for translation units containing device code):
1. The device compilation pass that generates the device code (SYCL kernels and referenced device functions) and glue code needed by the host compiler to reference the device code from host code.
{ComputeCpp_ROOT}/bin/compute++ -I ../../ -I {ComputeCpp_ROOT}/include/ -std=c++11 -mllvm -inline-threshold=1000 -Wno-ignored-attributes -sycl -intelspirmetadata -emit-llvm -no-serial-memop -sycl-compress-name -DBUILD_PLATFORM_SPIR -DNDBUG -O3 -c tensor_benchmarks_sycl.cc
2. The host compilation pass that generates the final host binary.
clang++-3.7 -include tensor_benchmarks_sycl.sycl benchmark_main.cc tensor_benchmarks_sycl.cc -pthread -I ../../ -I {ComputeCpp_ROOT}/include/ -L {ComputeCpp_ROOT}/lib/ -lComputeCpp -lOpenCL -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 -o tensor_benchmark_sycl