mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
477 lines
18 KiB
C++
477 lines
18 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
static void test_simple_patch()
|
|
{
|
|
Tensor<float, 4> tensor(2,3,5,7);
|
|
tensor.setRandom();
|
|
|
|
Tensor<float, 5> single_pixel_patch;
|
|
single_pixel_patch = tensor.extract_image_patches<1, 1>();
|
|
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(4), 7);
|
|
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
if (tensor.data()[i] != single_pixel_patch.data()[i]) {
|
|
std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " << single_pixel_patch.data()[i] << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]);
|
|
}
|
|
|
|
Tensor<float, 5> entire_image_patch;
|
|
entire_image_patch = tensor.extract_image_patches<3, 5>();
|
|
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3*5);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(4), 7);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
int patchId = i+3*j;
|
|
for (int r = 0; r < 3; ++r) {
|
|
for (int c = 0; c < 5; ++c) {
|
|
for (int d = 0; d < 2; ++d) {
|
|
for (int b = 0; b < 7; ++b) {
|
|
float expected = 0.0f;
|
|
if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) {
|
|
expected = tensor(d, r-1+i, c-2+j, b);
|
|
}
|
|
if (entire_image_patch(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Tensor<float, 5> twod_patch;
|
|
twod_patch = tensor.extract_image_patches<2, 2>();
|
|
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(3), 3*5);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(4), 7);
|
|
|
|
// Based on the calculation described in TensorTraits.h, padding happens to be 0.
|
|
int row_padding = 0;
|
|
int col_padding = 0;
|
|
int stride = 1;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
int patchId = i+3*j;
|
|
for (int r = 0; r < 2; ++r) {
|
|
for (int c = 0; c < 2; ++c) {
|
|
for (int d = 0; d < 2; ++d) {
|
|
for (int b = 0; b < 7; ++b) {
|
|
float expected = 0.0f;
|
|
int row_offset = r*stride + i - row_padding;
|
|
int col_offset = c*stride + j - col_padding;
|
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor.dimension(1) && col_offset < tensor.dimension(2)) {
|
|
expected = tensor(d, row_offset, col_offset, b);
|
|
}
|
|
if (twod_patch(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verifies VALID padding (no padding) with incrementing values.
|
|
static void test_patch_padding_valid()
|
|
{
|
|
int input_depth = 3;
|
|
int input_rows = 3;
|
|
int input_cols = 3;
|
|
int input_batches = 1;
|
|
int ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>.
|
|
int stride = 2; // Only same stride is supported.
|
|
Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches);
|
|
// Initializes tensor with incrementing numbers.
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
tensor.data()[i] = i + 1;
|
|
}
|
|
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
|
|
|
|
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
|
|
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
|
|
VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols
|
|
VERIFY_IS_EQUAL(result.dimension(3), 1); // number of patches
|
|
VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches
|
|
|
|
// No padding is carried out.
|
|
int row_padding = 0;
|
|
int col_padding = 0;
|
|
|
|
for (int i = 0; (i+stride+ksize-1) < input_rows; i += stride) { // input rows
|
|
for (int j = 0; (j+stride+ksize-1) < input_cols; j += stride) { // input cols
|
|
int patchId = i+input_rows*j;
|
|
for (int r = 0; r < ksize; ++r) { // patch rows
|
|
for (int c = 0; c < ksize; ++c) { // patch cols
|
|
for (int d = 0; d < input_depth; ++d) { // depth
|
|
for (int b = 0; b < input_batches; ++b) { // batch
|
|
float expected = 0.0f;
|
|
int row_offset = r + i - row_padding;
|
|
int col_offset = c + j - col_padding;
|
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) {
|
|
expected = tensor(d, row_offset, col_offset, b);
|
|
}
|
|
if (result(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verifies VALID padding (no padding) with the same value.
|
|
static void test_patch_padding_valid_same_value()
|
|
{
|
|
int input_depth = 1;
|
|
int input_rows = 5;
|
|
int input_cols = 5;
|
|
int input_batches = 2;
|
|
int ksize = 3; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>.
|
|
int stride = 2; // Only same stride is supported.
|
|
Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches);
|
|
tensor = tensor.constant(11.0f);
|
|
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
|
|
|
|
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
|
|
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
|
|
VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols
|
|
VERIFY_IS_EQUAL(result.dimension(3), 4); // number of patches
|
|
VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches
|
|
|
|
// No padding is carried out.
|
|
int row_padding = 0;
|
|
int col_padding = 0;
|
|
|
|
for (int i = 0; (i+stride+ksize-1) <= input_rows; i += stride) { // input rows
|
|
for (int j = 0; (j+stride+ksize-1) <= input_cols; j += stride) { // input cols
|
|
int patchId = i+input_rows*j;
|
|
for (int r = 0; r < ksize; ++r) { // patch rows
|
|
for (int c = 0; c < ksize; ++c) { // patch cols
|
|
for (int d = 0; d < input_depth; ++d) { // depth
|
|
for (int b = 0; b < input_batches; ++b) { // batch
|
|
float expected = 0.0f;
|
|
int row_offset = r + i - row_padding;
|
|
int col_offset = c + j - col_padding;
|
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) {
|
|
expected = tensor(d, row_offset, col_offset, b);
|
|
}
|
|
if (result(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verifies SAME padding.
|
|
static void test_patch_padding_same()
|
|
{
|
|
int input_depth = 3;
|
|
int input_rows = 4;
|
|
int input_cols = 2;
|
|
int input_batches = 1;
|
|
int ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>.
|
|
int stride = 2; // Only same stride is supported.
|
|
Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches);
|
|
// Initializes tensor with incrementing numbers.
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
tensor.data()[i] = i + 1;
|
|
}
|
|
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME);
|
|
|
|
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
|
|
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
|
|
VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols
|
|
VERIFY_IS_EQUAL(result.dimension(3), 2); // number of patches
|
|
VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches
|
|
|
|
// Based on the calculation described in TensorTraits.h, padding happens to be
|
|
// 0.
|
|
int row_padding = 0;
|
|
int col_padding = 0;
|
|
|
|
for (int i = 0; (i+stride+ksize-1) <= input_rows; i += stride) { // input rows
|
|
for (int j = 0; (j+stride+ksize-1) <= input_cols; j += stride) { // input cols
|
|
int patchId = i+input_rows*j;
|
|
for (int r = 0; r < ksize; ++r) { // patch rows
|
|
for (int c = 0; c < ksize; ++c) { // patch cols
|
|
for (int d = 0; d < input_depth; ++d) { // depth
|
|
for (int b = 0; b < input_batches; ++b) { // batch
|
|
float expected = 0.0f;
|
|
int row_offset = r*stride + i - row_padding;
|
|
int col_offset = c*stride + j - col_padding;
|
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) {
|
|
expected = tensor(d, row_offset, col_offset, b);
|
|
}
|
|
if (result(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_patch_no_extra_dim()
|
|
{
|
|
Tensor<float, 3> tensor(2,3,5);
|
|
tensor.setRandom();
|
|
|
|
Tensor<float, 4> single_pixel_patch;
|
|
single_pixel_patch = tensor.extract_image_patches<1, 1>();
|
|
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1);
|
|
VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5);
|
|
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
if (tensor.data()[i] != single_pixel_patch.data()[i]) {
|
|
std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " << single_pixel_patch.data()[i] << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]);
|
|
}
|
|
|
|
Tensor<float, 4> entire_image_patch;
|
|
entire_image_patch = tensor.extract_image_patches<3, 5>();
|
|
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3*5);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
int patchId = i+3*j;
|
|
for (int r = 0; r < 3; ++r) {
|
|
for (int c = 0; c < 5; ++c) {
|
|
for (int d = 0; d < 2; ++d) {
|
|
float expected = 0.0f;
|
|
if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) {
|
|
expected = tensor(d, r-1+i, c-2+j);
|
|
}
|
|
if (entire_image_patch(d, r, c, patchId) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Tensor<float, 4> twod_patch;
|
|
twod_patch = tensor.extract_image_patches<2, 2>();
|
|
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(3), 3*5);
|
|
|
|
// Based on the calculation described in TensorTraits.h, padding happens to be 0.
|
|
int row_padding = 0;
|
|
int col_padding = 0;
|
|
int stride = 1;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
int patchId = i+3*j;
|
|
for (int r = 0; r < 2; ++r) {
|
|
for (int c = 0; c < 2; ++c) {
|
|
for (int d = 0; d < 2; ++d) {
|
|
float expected = 0.0f;
|
|
int row_offset = r*stride + i - row_padding;
|
|
int col_offset = c*stride + j - col_padding;
|
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor.dimension(1) && col_offset < tensor.dimension(2)) {
|
|
expected = tensor(d, row_offset, col_offset);
|
|
}
|
|
if (twod_patch(d, r, c, patchId) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_imagenet_patches()
|
|
{
|
|
// Test the code on typical configurations used by the 'imagenet' benchmarks at
|
|
// https://github.com/soumith/convnet-benchmarks
|
|
Tensor<float, 4> l_in(3, 128, 128, 128);
|
|
l_in.setRandom();
|
|
Tensor<float, 5> l_out = l_in.extract_image_patches(11, 11);
|
|
VERIFY_IS_EQUAL(l_out.dimension(0), 3);
|
|
VERIFY_IS_EQUAL(l_out.dimension(1), 11);
|
|
VERIFY_IS_EQUAL(l_out.dimension(2), 11);
|
|
VERIFY_IS_EQUAL(l_out.dimension(3), 128*128);
|
|
VERIFY_IS_EQUAL(l_out.dimension(4), 128);
|
|
for (int b = 0; b < 128; ++b) {
|
|
for (int i = 0; i < 128; ++i) {
|
|
for (int j = 0; j < 128; ++j) {
|
|
int patchId = i+128*j;
|
|
for (int c = 0; c < 11; ++c) {
|
|
for (int r = 0; r < 11; ++r) {
|
|
for (int d = 0; d < 3; ++d) {
|
|
float expected = 0.0f;
|
|
if (r-5+i >= 0 && c-5+j >= 0 && r-5+i < 128 && c-5+j < 128) {
|
|
expected = l_in(d, r-5+i, c-5+j, b);
|
|
}
|
|
if (l_out(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
l_in.resize(64, 64, 64, 128);
|
|
l_in.setRandom();
|
|
l_out = l_in.extract_image_patches(9, 9);
|
|
VERIFY_IS_EQUAL(l_out.dimension(0), 64);
|
|
VERIFY_IS_EQUAL(l_out.dimension(1), 9);
|
|
VERIFY_IS_EQUAL(l_out.dimension(2), 9);
|
|
VERIFY_IS_EQUAL(l_out.dimension(3), 64*64);
|
|
VERIFY_IS_EQUAL(l_out.dimension(4), 128);
|
|
for (int b = 0; b < 128; ++b) {
|
|
for (int i = 0; i < 64; ++i) {
|
|
for (int j = 0; j < 64; ++j) {
|
|
int patchId = i+64*j;
|
|
for (int c = 0; c < 9; ++c) {
|
|
for (int r = 0; r < 9; ++r) {
|
|
for (int d = 0; d < 64; ++d) {
|
|
float expected = 0.0f;
|
|
if (r-4+i >= 0 && c-4+j >= 0 && r-4+i < 64 && c-4+j < 64) {
|
|
expected = l_in(d, r-4+i, c-4+j, b);
|
|
}
|
|
if (l_out(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
l_in.resize(128, 16, 16, 128);
|
|
l_in.setRandom();
|
|
l_out = l_in.extract_image_patches(7, 7);
|
|
VERIFY_IS_EQUAL(l_out.dimension(0), 128);
|
|
VERIFY_IS_EQUAL(l_out.dimension(1), 7);
|
|
VERIFY_IS_EQUAL(l_out.dimension(2), 7);
|
|
VERIFY_IS_EQUAL(l_out.dimension(3), 16*16);
|
|
VERIFY_IS_EQUAL(l_out.dimension(4), 128);
|
|
for (int b = 0; b < 128; ++b) {
|
|
for (int i = 0; i < 16; ++i) {
|
|
for (int j = 0; j < 16; ++j) {
|
|
int patchId = i+16*j;
|
|
for (int c = 0; c < 7; ++c) {
|
|
for (int r = 0; r < 7; ++r) {
|
|
for (int d = 0; d < 128; ++d) {
|
|
float expected = 0.0f;
|
|
if (r-3+i >= 0 && c-3+j >= 0 && r-3+i < 16 && c-3+j < 16) {
|
|
expected = l_in(d, r-3+i, c-3+j, b);
|
|
}
|
|
if (l_out(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
l_in.resize(384, 13, 13, 128);
|
|
l_in.setRandom();
|
|
l_out = l_in.extract_image_patches(3, 3);
|
|
VERIFY_IS_EQUAL(l_out.dimension(0), 384);
|
|
VERIFY_IS_EQUAL(l_out.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(l_out.dimension(2), 3);
|
|
VERIFY_IS_EQUAL(l_out.dimension(3), 13*13);
|
|
VERIFY_IS_EQUAL(l_out.dimension(4), 128);
|
|
for (int b = 0; b < 128; ++b) {
|
|
for (int i = 0; i < 13; ++i) {
|
|
for (int j = 0; j < 13; ++j) {
|
|
int patchId = i+13*j;
|
|
for (int c = 0; c < 3; ++c) {
|
|
for (int r = 0; r < 3; ++r) {
|
|
for (int d = 0; d < 384; ++d) {
|
|
float expected = 0.0f;
|
|
if (r-1+i >= 0 && c-1+j >= 0 && r-1+i < 13 && c-1+j < 13) {
|
|
expected = l_in(d, r-1+i, c-1+j, b);
|
|
}
|
|
if (l_out(d, r, c, patchId, b) != expected) {
|
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
|
}
|
|
VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void test_cxx11_tensor_image_patch()
|
|
{
|
|
CALL_SUBTEST(test_simple_patch());
|
|
CALL_SUBTEST(test_patch_no_extra_dim());
|
|
CALL_SUBTEST(test_patch_padding_valid());
|
|
CALL_SUBTEST(test_patch_padding_valid_same_value());
|
|
CALL_SUBTEST(test_patch_padding_same());
|
|
CALL_SUBTEST(test_imagenet_patches());
|
|
}
|