eigen/test/eigensolver.cpp
Benoit Jacob 46fe7a3d9e if EIGEN_NICE_RANDOM is defined, the random functions will return numbers with
few bits left of the comma and for floating-point types will never return zero.
This replaces the custom functions in test/main.h, so one does not anymore need
to think about that when writing tests.
2008-09-01 17:31:21 +00:00

132 lines
5.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/QR>
#ifdef HAS_GSL
#include "gsl_helper.h"
#endif
template<typename MatrixType> void eigensolver(const MatrixType& m)
{
/* this test covers the following files:
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
RealScalar largerEps = 10*test_precision<RealScalar>();
MatrixType a = MatrixType::Random(rows,cols);
MatrixType a1 = MatrixType::Random(rows,cols);
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
MatrixType b = MatrixType::Random(rows,cols);
MatrixType b1 = MatrixType::Random(rows,cols);
MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
// generalized eigen pb
SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
#ifdef HAS_GSL
if (ei_is_same_type<RealScalar,double>::ret)
{
typedef GslTraits<Scalar> Gsl;
typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
typename GslTraits<RealScalar>::Vector gEval=0;
RealVectorType _eval;
MatrixType _evec;
convert<MatrixType>(symmA, gSymmA);
convert<MatrixType>(symmB, gSymmB);
convert<MatrixType>(symmA, gEvec);
gEval = GslTraits<RealScalar>::createVector(rows);
Gsl::eigen_symm(gSymmA, gEval, gEvec);
convert(gEval, _eval);
convert(gEvec, _evec);
// test gsl itself !
VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal().eval(), largerEps));
// compare with eigen
VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
// generalized pb
Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
convert(gEval, _eval);
convert(gEvec, _evec);
// test GSL itself:
VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal().eval()), largerEps));
// compare with eigen
// std::cerr << _eval.transpose() << "\n" << eiSymmGen.eigenvalues().transpose() << "\n\n";
// std::cerr << _evec.format(6) << "\n\n" << eiSymmGen.eigenvectors().format(6) << "\n\n\n";
VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymmGen.eigenvectors().cwise().abs());
Gsl::free(gSymmA);
Gsl::free(gSymmB);
GslTraits<RealScalar>::free(gEval);
Gsl::free(gEvec);
}
#endif
VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal().eval(), largerEps));
// generalized eigen problem Ax = lBx
VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal().eval()), largerEps));
// EigenSolver<MatrixType> eiNotSymmButSymm(covMat);
// VERIFY_IS_APPROX((covMat.template cast<Complex>()) * (eiNotSymmButSymm.eigenvectors().template cast<Complex>()),
// (eiNotSymmButSymm.eigenvectors().template cast<Complex>()) * (eiNotSymmButSymm.eigenvalues().asDiagonal()));
// EigenSolver<MatrixType> eiNotSymm(a);
// VERIFY_IS_APPROX(a.template cast<Complex>() * eiNotSymm.eigenvectors().template cast<Complex>(),
// eiNotSymm.eigenvectors().template cast<Complex>() * eiNotSymm.eigenvalues().asDiagonal());
}
void test_eigensolver()
{
for(int i = 0; i < g_repeat; i++) {
// very important to test a 3x3 matrix since we provide a special path for it
CALL_SUBTEST( eigensolver(Matrix3f()) );
CALL_SUBTEST( eigensolver(Matrix4d()) );
CALL_SUBTEST( eigensolver(MatrixXf(7,7)) );
CALL_SUBTEST( eigensolver(MatrixXcd(5,5)) );
CALL_SUBTEST( eigensolver(MatrixXd(19,19)) );
}
}