mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
189 lines
6.8 KiB
C++
189 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType>
|
|
bool equalsIdentity(const MatrixType& A)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
Scalar zero = static_cast<Scalar>(0);
|
|
|
|
bool offDiagOK = true;
|
|
for (Index i = 0; i < A.rows(); ++i) {
|
|
for (Index j = i+1; j < A.cols(); ++j) {
|
|
offDiagOK = offDiagOK && (A(i,j) == zero);
|
|
}
|
|
}
|
|
for (Index i = 0; i < A.rows(); ++i) {
|
|
for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
|
|
offDiagOK = offDiagOK && (A(i,j) == zero);
|
|
}
|
|
}
|
|
|
|
bool diagOK = (A.diagonal().array() == 1).all();
|
|
return offDiagOK && diagOK;
|
|
}
|
|
|
|
template<typename VectorType>
|
|
void testVectorType(const VectorType& base)
|
|
{
|
|
typedef typename VectorType::Scalar Scalar;
|
|
|
|
const Index size = base.size();
|
|
|
|
Scalar high = internal::random<Scalar>(-500,500);
|
|
Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
|
|
if (low>high) std::swap(low,high);
|
|
|
|
const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1));
|
|
|
|
// check whether the result yields what we expect it to do
|
|
VectorType m(base);
|
|
m.setLinSpaced(size,low,high);
|
|
|
|
if(!NumTraits<Scalar>::IsInteger)
|
|
{
|
|
VectorType n(size);
|
|
for (int i=0; i<size; ++i)
|
|
n(i) = low+i*step;
|
|
VERIFY_IS_APPROX(m,n);
|
|
}
|
|
|
|
VectorType n(size);
|
|
for (int i=0; i<size; ++i)
|
|
n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/(size-1));
|
|
VERIFY_IS_APPROX(m,n);
|
|
|
|
// random access version
|
|
m = VectorType::LinSpaced(size,low,high);
|
|
VERIFY_IS_APPROX(m,n);
|
|
|
|
VERIFY( internal::isApprox(m(m.size()-1),high) );
|
|
VERIFY( size==1 || internal::isApprox(m(0),low) );
|
|
|
|
// sequential access version
|
|
m = VectorType::LinSpaced(Sequential,size,low,high);
|
|
VERIFY_IS_APPROX(m,n);
|
|
|
|
VERIFY( internal::isApprox(m(m.size()-1),high) );
|
|
VERIFY( size==1 || internal::isApprox(m(0),low) );
|
|
|
|
// check whether everything works with row and col major vectors
|
|
Matrix<Scalar,Dynamic,1> row_vector(size);
|
|
Matrix<Scalar,1,Dynamic> col_vector(size);
|
|
row_vector.setLinSpaced(size,low,high);
|
|
col_vector.setLinSpaced(size,low,high);
|
|
// when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
|
|
// when computing the squared sum in isApprox, thus the 2x factor.
|
|
VERIFY( row_vector.isApprox(col_vector.transpose(), Scalar(2)*NumTraits<Scalar>::epsilon()));
|
|
|
|
Matrix<Scalar,Dynamic,1> size_changer(size+50);
|
|
size_changer.setLinSpaced(size,low,high);
|
|
VERIFY( size_changer.size() == size );
|
|
|
|
typedef Matrix<Scalar,1,1> ScalarMatrix;
|
|
ScalarMatrix scalar;
|
|
scalar.setLinSpaced(1,low,high);
|
|
VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
|
|
VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
|
|
|
|
// regression test for bug 526 (linear vectorized transversal)
|
|
if (size > 1) {
|
|
m.tail(size-1).setLinSpaced(low, high);
|
|
VERIFY_IS_APPROX(m(size-1), high);
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testMatrixType(const MatrixType& m)
|
|
{
|
|
using std::abs;
|
|
const Index rows = m.rows();
|
|
const Index cols = m.cols();
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
Scalar s1;
|
|
do {
|
|
s1 = internal::random<Scalar>();
|
|
} while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
|
|
|
|
MatrixType A;
|
|
A.setIdentity(rows, cols);
|
|
VERIFY(equalsIdentity(A));
|
|
VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
|
|
|
|
|
|
A = MatrixType::Constant(rows,cols,s1);
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
Index j = internal::random<Index>(0,cols-1);
|
|
VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 );
|
|
VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 );
|
|
VERIFY_IS_APPROX( A(i,j), s1 );
|
|
}
|
|
|
|
void test_nullary()
|
|
{
|
|
CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
|
|
CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
|
|
CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
|
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,300))) );
|
|
CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232
|
|
CALL_SUBTEST_6( testVectorType(Vector3d()) );
|
|
CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,300))) );
|
|
CALL_SUBTEST_8( testVectorType(Vector3f()) );
|
|
CALL_SUBTEST_8( testVectorType(Vector4f()) );
|
|
CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) );
|
|
CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
|
|
|
|
CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,300))) );
|
|
CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) );
|
|
}
|
|
|
|
#ifdef EIGEN_TEST_PART_6
|
|
// Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
|
|
VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() );
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_10
|
|
// check some internal logic
|
|
VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<double> >::value ));
|
|
VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value ));
|
|
VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value ));
|
|
VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret ));
|
|
|
|
VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value ));
|
|
VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value ));
|
|
VERIFY(( internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
|
|
VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));
|
|
|
|
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float,float,false> >::value ));
|
|
VERIFY(( internal::has_unary_operator<internal::linspaced_op<float,float,false> >::value ));
|
|
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float,float,false> >::value ));
|
|
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float,float,false> >::ret ));
|
|
|
|
// Regression unit test for a weird MSVC 2012 bug.
|
|
// Search "nullary_wrapper_workaround_msvc_2012" in CoreEvaluators.h for the details.
|
|
{
|
|
MatrixXf A = MatrixXf::Random(3,3);
|
|
Ref<const MatrixXf> R = 2.0*A;
|
|
VERIFY_IS_APPROX(R, A+A);
|
|
|
|
Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A;
|
|
|
|
VectorXi V = VectorXi::Random(3);
|
|
Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V;
|
|
VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3));
|
|
}
|
|
#endif
|
|
}
|