mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
137 lines
5.0 KiB
C++
137 lines
5.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2021 Kolja Brix <kolja.brix@rwth-aachen.de>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/SVD>
|
|
|
|
|
|
template<typename MatrixType>
|
|
void check_generateRandomUnitaryMatrix(const Index dim)
|
|
{
|
|
const MatrixType Q = generateRandomUnitaryMatrix<MatrixType>(dim);
|
|
|
|
// validate dimensions
|
|
VERIFY_IS_EQUAL(Q.rows(), dim);
|
|
VERIFY_IS_EQUAL(Q.cols(), dim);
|
|
|
|
VERIFY_IS_UNITARY(Q);
|
|
}
|
|
|
|
template<typename VectorType, typename RealScalarType>
|
|
void check_setupRandomSvs(const Index dim, const RealScalarType max)
|
|
{
|
|
const VectorType v = setupRandomSvs<VectorType, RealScalarType>(dim, max);
|
|
|
|
// validate dimensions
|
|
VERIFY_IS_EQUAL(v.size(), dim);
|
|
|
|
// check entries
|
|
for(Index i = 0; i < v.size(); ++i)
|
|
VERIFY_GE(v(i), 0);
|
|
for(Index i = 0; i < v.size()-1; ++i)
|
|
VERIFY_GE(v(i), v(i+1));
|
|
}
|
|
|
|
template<typename VectorType, typename RealScalarType>
|
|
void check_setupRangeSvs(const Index dim, const RealScalarType min, const RealScalarType max)
|
|
{
|
|
const VectorType v = setupRangeSvs<VectorType, RealScalarType>(dim, min, max);
|
|
|
|
// validate dimensions
|
|
VERIFY_IS_EQUAL(v.size(), dim);
|
|
|
|
// check entries
|
|
if(dim == 1) {
|
|
VERIFY_IS_APPROX(v(0), min);
|
|
} else {
|
|
VERIFY_IS_APPROX(v(0), max);
|
|
VERIFY_IS_APPROX(v(dim-1), min);
|
|
}
|
|
for(Index i = 0; i < v.size()-1; ++i)
|
|
VERIFY_GE(v(i), v(i+1));
|
|
}
|
|
|
|
template<typename MatrixType, typename RealScalar, typename RealVectorType>
|
|
void check_generateRandomMatrixSvs(const Index rows, const Index cols, const Index diag_size,
|
|
const RealScalar min_svs, const RealScalar max_svs)
|
|
{
|
|
RealVectorType svs = setupRangeSvs<RealVectorType, RealScalar>(diag_size, min_svs, max_svs);
|
|
|
|
MatrixType M;
|
|
generateRandomMatrixSvs(svs, rows, cols, M);
|
|
|
|
// validate dimensions
|
|
VERIFY_IS_EQUAL(M.rows(), rows);
|
|
VERIFY_IS_EQUAL(M.cols(), cols);
|
|
VERIFY_IS_EQUAL(svs.size(), diag_size);
|
|
|
|
// validate singular values
|
|
Eigen::JacobiSVD<MatrixType> SVD(M);
|
|
VERIFY_IS_APPROX(svs, SVD.singularValues());
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void check_random_matrix(const MatrixType &m)
|
|
{
|
|
enum {
|
|
Rows = MatrixType::RowsAtCompileTime,
|
|
Cols = MatrixType::ColsAtCompileTime,
|
|
DiagSize = internal::min_size_prefer_dynamic(Rows, Cols)
|
|
};
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<RealScalar, DiagSize, 1> RealVectorType;
|
|
|
|
const Index rows = m.rows(), cols = m.cols();
|
|
const Index diag_size = (std::min)(rows, cols);
|
|
const RealScalar min_svs = 1.0, max_svs = 1000.0;
|
|
|
|
// check generation of unitary random matrices
|
|
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
|
|
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
|
check_generateRandomUnitaryMatrix<MatrixAType>(rows);
|
|
check_generateRandomUnitaryMatrix<MatrixBType>(cols);
|
|
|
|
// test generators for singular values
|
|
check_setupRandomSvs<RealVectorType, RealScalar>(diag_size, max_svs);
|
|
check_setupRangeSvs<RealVectorType, RealScalar>(diag_size, min_svs, max_svs);
|
|
|
|
// check generation of random matrices
|
|
check_generateRandomMatrixSvs<MatrixType, RealScalar, RealVectorType>(rows, cols, diag_size, min_svs, max_svs);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(random_matrix)
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(check_random_matrix(Matrix<float, 1, 1>()));
|
|
CALL_SUBTEST_2(check_random_matrix(Matrix<float, 4, 4>()));
|
|
CALL_SUBTEST_3(check_random_matrix(Matrix<float, 2, 3>()));
|
|
CALL_SUBTEST_4(check_random_matrix(Matrix<float, 7, 4>()));
|
|
|
|
CALL_SUBTEST_5(check_random_matrix(Matrix<double, 1, 1>()));
|
|
CALL_SUBTEST_6(check_random_matrix(Matrix<double, 6, 6>()));
|
|
CALL_SUBTEST_7(check_random_matrix(Matrix<double, 5, 3>()));
|
|
CALL_SUBTEST_8(check_random_matrix(Matrix<double, 4, 9>()));
|
|
|
|
CALL_SUBTEST_9(check_random_matrix(Matrix<std::complex<float>, 12, 12>()));
|
|
CALL_SUBTEST_10(check_random_matrix(Matrix<std::complex<float>, 7, 14>()));
|
|
CALL_SUBTEST_11(check_random_matrix(Matrix<std::complex<double>, 15, 11>()));
|
|
CALL_SUBTEST_12(check_random_matrix(Matrix<std::complex<double>, 6, 9>()));
|
|
|
|
CALL_SUBTEST_13(check_random_matrix(
|
|
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_14(check_random_matrix(
|
|
MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_15(check_random_matrix(
|
|
MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
CALL_SUBTEST_16(check_random_matrix(
|
|
MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
|
|
}
|
|
}
|