mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
f124f07965
Also, a few minor fixes for GPU tests running in HIP mode. 1. Adding an include for hip/hip_runtime.h in the Macros.h file For HIP __host__ and __device__ are macros which are defined in hip headers. Their definitions need to be included before their use in the file. 2. Fixing the compile failure in TensorContractionGpu introduced by the commit to "Fuse computations into the Tensor contractions using output kernel" 3. Fixing a HIP/clang specific compile error by making the struct-member assignment explicit
155 lines
5.3 KiB
Plaintext
155 lines
5.3 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
|
|
#define EIGEN_USE_GPU
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
|
|
template<typename Type, int DataLayout>
|
|
static void test_full_reductions() {
|
|
|
|
Eigen::GpuStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
const int num_rows = internal::random<int>(1024, 5*1024);
|
|
const int num_cols = internal::random<int>(1024, 5*1024);
|
|
|
|
Tensor<Type, 2, DataLayout> in(num_rows, num_cols);
|
|
in.setRandom();
|
|
|
|
Tensor<Type, 0, DataLayout> full_redux;
|
|
full_redux = in.sum();
|
|
|
|
std::size_t in_bytes = in.size() * sizeof(Type);
|
|
std::size_t out_bytes = full_redux.size() * sizeof(Type);
|
|
Type* gpu_in_ptr = static_cast<Type*>(gpu_device.allocate(in_bytes));
|
|
Type* gpu_out_ptr = static_cast<Type*>(gpu_device.allocate(out_bytes));
|
|
gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
|
|
|
|
TensorMap<Tensor<Type, 2, DataLayout> > in_gpu(gpu_in_ptr, num_rows, num_cols);
|
|
TensorMap<Tensor<Type, 0, DataLayout> > out_gpu(gpu_out_ptr);
|
|
|
|
out_gpu.device(gpu_device) = in_gpu.sum();
|
|
|
|
Tensor<Type, 0, DataLayout> full_redux_gpu;
|
|
gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
|
|
gpu_device.synchronize();
|
|
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
|
|
|
|
gpu_device.deallocate(gpu_in_ptr);
|
|
gpu_device.deallocate(gpu_out_ptr);
|
|
}
|
|
|
|
template<typename Type, int DataLayout>
|
|
static void test_first_dim_reductions() {
|
|
int dim_x = 33;
|
|
int dim_y = 1;
|
|
int dim_z = 128;
|
|
|
|
Tensor<Type, 3, DataLayout> in(dim_x, dim_y, dim_z);
|
|
in.setRandom();
|
|
|
|
Eigen::array<int, 1> red_axis;
|
|
red_axis[0] = 0;
|
|
Tensor<Type, 2, DataLayout> redux = in.sum(red_axis);
|
|
|
|
// Create device
|
|
Eigen::GpuStreamDevice stream;
|
|
Eigen::GpuDevice dev(&stream);
|
|
|
|
// Create data(T)
|
|
Type* in_data = (Type*)dev.allocate(dim_x*dim_y*dim_z*sizeof(Type));
|
|
Type* out_data = (Type*)dev.allocate(dim_z*dim_y*sizeof(Type));
|
|
Eigen::TensorMap<Eigen::Tensor<Type, 3, DataLayout> > gpu_in(in_data, dim_x, dim_y, dim_z);
|
|
Eigen::TensorMap<Eigen::Tensor<Type, 2, DataLayout> > gpu_out(out_data, dim_y, dim_z);
|
|
|
|
// Perform operation
|
|
dev.memcpyHostToDevice(in_data, in.data(), in.size()*sizeof(Type));
|
|
gpu_out.device(dev) = gpu_in.sum(red_axis);
|
|
gpu_out.device(dev) += gpu_in.sum(red_axis);
|
|
Tensor<Type, 2, DataLayout> redux_gpu(dim_y, dim_z);
|
|
dev.memcpyDeviceToHost(redux_gpu.data(), out_data, gpu_out.size()*sizeof(Type));
|
|
dev.synchronize();
|
|
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
for (int i = 0; i < gpu_out.size(); ++i) {
|
|
VERIFY_IS_APPROX(2*redux(i), redux_gpu(i));
|
|
}
|
|
|
|
dev.deallocate(in_data);
|
|
dev.deallocate(out_data);
|
|
}
|
|
|
|
template<typename Type, int DataLayout>
|
|
static void test_last_dim_reductions() {
|
|
int dim_x = 128;
|
|
int dim_y = 1;
|
|
int dim_z = 33;
|
|
|
|
Tensor<Type, 3, DataLayout> in(dim_x, dim_y, dim_z);
|
|
in.setRandom();
|
|
|
|
Eigen::array<int, 1> red_axis;
|
|
red_axis[0] = 2;
|
|
Tensor<Type, 2, DataLayout> redux = in.sum(red_axis);
|
|
|
|
// Create device
|
|
Eigen::GpuStreamDevice stream;
|
|
Eigen::GpuDevice dev(&stream);
|
|
|
|
// Create data
|
|
Type* in_data = (Type*)dev.allocate(dim_x*dim_y*dim_z*sizeof(Type));
|
|
Type* out_data = (Type*)dev.allocate(dim_x*dim_y*sizeof(Type));
|
|
Eigen::TensorMap<Eigen::Tensor<Type, 3, DataLayout> > gpu_in(in_data, dim_x, dim_y, dim_z);
|
|
Eigen::TensorMap<Eigen::Tensor<Type, 2, DataLayout> > gpu_out(out_data, dim_x, dim_y);
|
|
|
|
// Perform operation
|
|
dev.memcpyHostToDevice(in_data, in.data(), in.size()*sizeof(Type));
|
|
gpu_out.device(dev) = gpu_in.sum(red_axis);
|
|
gpu_out.device(dev) += gpu_in.sum(red_axis);
|
|
Tensor<Type, 2, DataLayout> redux_gpu(dim_x, dim_y);
|
|
dev.memcpyDeviceToHost(redux_gpu.data(), out_data, gpu_out.size()*sizeof(Type));
|
|
dev.synchronize();
|
|
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
for (int i = 0; i < gpu_out.size(); ++i) {
|
|
VERIFY_IS_APPROX(2*redux(i), redux_gpu(i));
|
|
}
|
|
|
|
dev.deallocate(in_data);
|
|
dev.deallocate(out_data);
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_reduction_gpu) {
|
|
CALL_SUBTEST_1((test_full_reductions<float, ColMajor>()));
|
|
CALL_SUBTEST_1((test_full_reductions<double, ColMajor>()));
|
|
CALL_SUBTEST_2((test_full_reductions<float, RowMajor>()));
|
|
CALL_SUBTEST_2((test_full_reductions<double, RowMajor>()));
|
|
|
|
CALL_SUBTEST_3((test_first_dim_reductions<float, ColMajor>()));
|
|
CALL_SUBTEST_3((test_first_dim_reductions<double, ColMajor>()));
|
|
CALL_SUBTEST_4((test_first_dim_reductions<float, RowMajor>()));
|
|
// Outer reductions of doubles aren't supported just yet.
|
|
// CALL_SUBTEST_4((test_first_dim_reductions<double, RowMajor>()))
|
|
|
|
CALL_SUBTEST_5((test_last_dim_reductions<float, ColMajor>()));
|
|
// Outer reductions of doubles aren't supported just yet.
|
|
// CALL_SUBTEST_5((test_last_dim_reductions<double, ColMajor>()));
|
|
CALL_SUBTEST_6((test_last_dim_reductions<float, RowMajor>()));
|
|
CALL_SUBTEST_6((test_last_dim_reductions<double, RowMajor>()));
|
|
}
|