mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
2aaaf22623
- "Scalar angle(int) const" should be "const Vector& angles() const" - then method "coeffs" could be removed. - avoid one letter names like h, p, r -> use alpha(), beta(), gamma() ;) - about the "fromRotation" methods: - replace the ones which are not static by operator= (as in Quaternion) - the others are actually static methods: use a capital F: FromRotation - method "invert" should be removed. - use a macro to define both float and double EulerAnglesXYZ* typedefs - AddConstIf -> not used - no needs for NegateIfXor, compilers are extremely good at optimizing away branches based on compile time constants: if(IsHeadingOpposite-=IsEven) res.alpha() = -res.alpha();
209 lines
6.3 KiB
C++
209 lines
6.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <unsupported/Eigen/EulerAngles>
|
|
|
|
using namespace Eigen;
|
|
|
|
template<typename EulerSystem, typename Scalar>
|
|
void verify_euler_ranged(const Matrix<Scalar,3,1>& ea,
|
|
bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
|
|
{
|
|
typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
typedef Quaternion<Scalar> QuaternionType;
|
|
typedef AngleAxis<Scalar> AngleAxisType;
|
|
using std::abs;
|
|
|
|
Scalar alphaRangeStart, alphaRangeEnd;
|
|
Scalar betaRangeStart, betaRangeEnd;
|
|
Scalar gammaRangeStart, gammaRangeEnd;
|
|
|
|
if (positiveRangeAlpha)
|
|
{
|
|
alphaRangeStart = Scalar(0);
|
|
alphaRangeEnd = Scalar(2 * EIGEN_PI);
|
|
}
|
|
else
|
|
{
|
|
alphaRangeStart = -Scalar(EIGEN_PI);
|
|
alphaRangeEnd = Scalar(EIGEN_PI);
|
|
}
|
|
|
|
if (positiveRangeBeta)
|
|
{
|
|
betaRangeStart = Scalar(0);
|
|
betaRangeEnd = Scalar(2 * EIGEN_PI);
|
|
}
|
|
else
|
|
{
|
|
betaRangeStart = -Scalar(EIGEN_PI);
|
|
betaRangeEnd = Scalar(EIGEN_PI);
|
|
}
|
|
|
|
if (positiveRangeGamma)
|
|
{
|
|
gammaRangeStart = Scalar(0);
|
|
gammaRangeEnd = Scalar(2 * EIGEN_PI);
|
|
}
|
|
else
|
|
{
|
|
gammaRangeStart = -Scalar(EIGEN_PI);
|
|
gammaRangeEnd = Scalar(EIGEN_PI);
|
|
}
|
|
|
|
const int i = EulerSystem::AlphaAxisAbs - 1;
|
|
const int j = EulerSystem::BetaAxisAbs - 1;
|
|
const int k = EulerSystem::GammaAxisAbs - 1;
|
|
|
|
const int iFactor = EulerSystem::IsAlphaOpposite ? -1 : 1;
|
|
const int jFactor = EulerSystem::IsBetaOpposite ? -1 : 1;
|
|
const int kFactor = EulerSystem::IsGammaOpposite ? -1 : 1;
|
|
|
|
const Vector3 I = EulerAnglesType::AlphaAxisVector();
|
|
const Vector3 J = EulerAnglesType::BetaAxisVector();
|
|
const Vector3 K = EulerAnglesType::GammaAxisVector();
|
|
|
|
EulerAnglesType e(ea[0], ea[1], ea[2]);
|
|
|
|
Matrix3 m(e);
|
|
Vector3 eabis = EulerAnglesType(m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
|
|
|
|
// Check that eabis in range
|
|
VERIFY(alphaRangeStart <= eabis[0] && eabis[0] <= alphaRangeEnd);
|
|
VERIFY(betaRangeStart <= eabis[1] && eabis[1] <= betaRangeEnd);
|
|
VERIFY(gammaRangeStart <= eabis[2] && eabis[2] <= gammaRangeEnd);
|
|
|
|
Vector3 eabis2 = m.eulerAngles(i, j, k);
|
|
|
|
// Invert the relevant axes
|
|
eabis2[0] *= iFactor;
|
|
eabis2[1] *= jFactor;
|
|
eabis2[2] *= kFactor;
|
|
|
|
// Saturate the angles to the correct range
|
|
if (positiveRangeAlpha && (eabis2[0] < 0))
|
|
eabis2[0] += Scalar(2 * EIGEN_PI);
|
|
if (positiveRangeBeta && (eabis2[1] < 0))
|
|
eabis2[1] += Scalar(2 * EIGEN_PI);
|
|
if (positiveRangeGamma && (eabis2[2] < 0))
|
|
eabis2[2] += Scalar(2 * EIGEN_PI);
|
|
|
|
VERIFY_IS_APPROX(eabis, eabis2);// Verify that our estimation is the same as m.eulerAngles() is
|
|
|
|
Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K));
|
|
VERIFY_IS_APPROX(m, mbis);
|
|
|
|
// Tests that are only relevant for no possitive range
|
|
if (!(positiveRangeAlpha || positiveRangeBeta || positiveRangeGamma))
|
|
{
|
|
/* If I==K, and ea[1]==0, then there no unique solution. */
|
|
/* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
|
|
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
|
|
VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
|
|
|
|
// approx_or_less_than does not work for 0
|
|
VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
|
|
}
|
|
|
|
// Quaternions
|
|
QuaternionType q(e);
|
|
eabis = EulerAnglesType(q, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
|
|
VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
|
|
}
|
|
|
|
template<typename EulerSystem, typename Scalar>
|
|
void verify_euler(const Matrix<Scalar,3,1>& ea)
|
|
{
|
|
verify_euler_ranged<EulerSystem>(ea, false, false, false);
|
|
verify_euler_ranged<EulerSystem>(ea, false, false, true);
|
|
verify_euler_ranged<EulerSystem>(ea, false, true, false);
|
|
verify_euler_ranged<EulerSystem>(ea, false, true, true);
|
|
verify_euler_ranged<EulerSystem>(ea, true, false, false);
|
|
verify_euler_ranged<EulerSystem>(ea, true, false, true);
|
|
verify_euler_ranged<EulerSystem>(ea, true, true, false);
|
|
verify_euler_ranged<EulerSystem>(ea, true, true, true);
|
|
}
|
|
|
|
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
|
|
{
|
|
verify_euler<EulerSystemXYZ>(ea);
|
|
verify_euler<EulerSystemXYX>(ea);
|
|
verify_euler<EulerSystemXZY>(ea);
|
|
verify_euler<EulerSystemXZX>(ea);
|
|
|
|
verify_euler<EulerSystemYZX>(ea);
|
|
verify_euler<EulerSystemYZY>(ea);
|
|
verify_euler<EulerSystemYXZ>(ea);
|
|
verify_euler<EulerSystemYXY>(ea);
|
|
|
|
verify_euler<EulerSystemZXY>(ea);
|
|
verify_euler<EulerSystemZXZ>(ea);
|
|
verify_euler<EulerSystemZYX>(ea);
|
|
verify_euler<EulerSystemZYZ>(ea);
|
|
}
|
|
|
|
template<typename Scalar> void eulerangles()
|
|
{
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
typedef Array<Scalar,3,1> Array3;
|
|
typedef Quaternion<Scalar> Quaternionx;
|
|
typedef AngleAxis<Scalar> AngleAxisType;
|
|
|
|
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
|
|
Quaternionx q1;
|
|
q1 = AngleAxisType(a, Vector3::Random().normalized());
|
|
Matrix3 m;
|
|
m = q1;
|
|
|
|
Vector3 ea = m.eulerAngles(0,1,2);
|
|
check_all_var(ea);
|
|
ea = m.eulerAngles(0,1,0);
|
|
check_all_var(ea);
|
|
|
|
// Check with purely random Quaternion:
|
|
q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
|
|
m = q1;
|
|
ea = m.eulerAngles(0,1,2);
|
|
check_all_var(ea);
|
|
ea = m.eulerAngles(0,1,0);
|
|
check_all_var(ea);
|
|
|
|
// Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
|
|
ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
|
|
check_all_var(ea);
|
|
|
|
ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
|
|
check_all_var(ea);
|
|
|
|
ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
|
|
check_all_var(ea);
|
|
|
|
ea[1] = 0;
|
|
check_all_var(ea);
|
|
|
|
ea.head(2).setZero();
|
|
check_all_var(ea);
|
|
|
|
ea.setZero();
|
|
check_all_var(ea);
|
|
}
|
|
|
|
void test_EulerAngles()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( eulerangles<float>() );
|
|
CALL_SUBTEST_2( eulerangles<double>() );
|
|
}
|
|
}
|