mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
176 lines
6.8 KiB
C++
176 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "sparse.h"
|
|
#include <Eigen/SparseExtra>
|
|
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
#include <Eigen/CholmodSupport>
|
|
#endif
|
|
|
|
template<typename Scalar> void sparse_ldlt(int rows, int cols)
|
|
{
|
|
static bool odd = true;
|
|
odd = !odd;
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
|
|
|
|
SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
|
|
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
|
|
|
refX = refMat3.template selfadjointView<Upper>().ldlt().solve(b);
|
|
typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
x = b;
|
|
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m3);
|
|
if (ldlt.succeeded())
|
|
ldlt.solveInPlace(x);
|
|
else
|
|
std::cerr << "warning LDLT failed\n";
|
|
|
|
VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
|
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
{
|
|
x = b;
|
|
SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m3);
|
|
if (ldlt2.succeeded())
|
|
{
|
|
ldlt2.solveInPlace(x);
|
|
VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace");
|
|
|
|
x = ldlt2.solve(b);
|
|
VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve");
|
|
}
|
|
else
|
|
std::cerr << "warning LDLT failed\n";
|
|
}
|
|
#endif
|
|
|
|
// new Simplicial LLT
|
|
|
|
|
|
// new API
|
|
{
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector ref_x(cols), x(cols);
|
|
DenseMatrix B = DenseMatrix::Random(rows,cols);
|
|
DenseMatrix ref_X(rows,cols), X(rows,cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
|
|
|
|
for(int i=0; i<rows; ++i)
|
|
m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
|
|
|
|
|
SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
|
|
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
|
|
|
m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
|
|
m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
|
|
|
|
// with a single vector as the rhs
|
|
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
|
|
|
x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
|
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, single dense rhs");
|
|
|
|
x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
|
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, single dense rhs");
|
|
|
|
x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3_lo).solve(b);
|
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs");
|
|
|
|
x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3_up).solve(b);
|
|
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs");
|
|
|
|
|
|
// with multiple rhs
|
|
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B);
|
|
|
|
X = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
|
|
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, multiple dense rhs");
|
|
|
|
X = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
|
|
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, multiple dense rhs");
|
|
|
|
|
|
// with a sparse rhs
|
|
// SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols);
|
|
// B.diagonal().array() += 1;
|
|
// spB = B.sparseView(0.5,1);
|
|
//
|
|
// ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
|
|
//
|
|
// spX = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3).solve(spB);
|
|
// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
|
|
//
|
|
// spX = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3).solve(spB);
|
|
// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
|
|
}
|
|
|
|
|
|
|
|
// for(int i=0; i<rows; ++i)
|
|
// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
|
|
//
|
|
// refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
|
|
// typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
// x = b;
|
|
// SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
|
// if (ldlt.succeeded())
|
|
// ldlt.solveInPlace(x);
|
|
// else
|
|
// std::cerr << "warning LDLT failed\n";
|
|
//
|
|
// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
|
|
// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
|
|
|
|
|
}
|
|
|
|
void test_sparse_ldlt()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(sparse_ldlt<double>(8, 8) );
|
|
int s = internal::random<int>(1,300);
|
|
CALL_SUBTEST_2(sparse_ldlt<std::complex<double> >(s,s) );
|
|
CALL_SUBTEST_1(sparse_ldlt<double>(s,s) );
|
|
}
|
|
}
|