eigen/test/main.h
Antonio Sanchez bf66137efc New GPU test utilities.
This introduces new functions:
```
// returns kernel(args...) running on the CPU.
Eigen::run_on_cpu(Kernel kernel, Args&&... args);

// returns kernel(args...) running on the GPU.
Eigen::run_on_gpu(Kernel kernel, Args&&... args);
Eigen::run_on_gpu_with_hint(size_t buffer_capacity_hint, Kernel kernel, Args&&... args);

// returns kernel(args...) running on the GPU if using
//   a GPU compiler, or CPU otherwise.
Eigen::run(Kernel kernel, Args&&... args);
Eigen::run_with_hint(size_t buffer_capacity_hint, Kernel kernel, Args&&... args);
```

Running on the GPU is accomplished by:
- Serializing the kernel inputs on the CPU
- Transferring the inputs to the GPU
- Passing the kernel and serialized inputs to a GPU kernel
- Deserializing the inputs on the GPU
- Running `kernel(inputs...)` on the GPU
- Serializing all output parameters and the return value
- Transferring the serialized outputs back to the CPU
- Deserializing the outputs and return value on the CPU
- Returning the deserialized return value

All inputs must be serializable (currently POD types, `Eigen::Matrix`
and `Eigen::Array`).  The kernel must also  be POD (though usually
contains no actual data).

Tested on CUDA 9.1, 10.2, 11.3, with g++-6, g++-8, g++-10 respectively.

This MR depends on !622, !623, !624.
2021-09-10 14:22:50 -07:00

1093 lines
40 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <cstdlib>
#include <cerrno>
#include <ctime>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#include <typeinfo>
#include <functional>
// The following includes of STL headers have to be done _before_ the
// definition of macros min() and max(). The reason is that many STL
// implementations will not work properly as the min and max symbols collide
// with the STL functions std:min() and std::max(). The STL headers may check
// for the macro definition of min/max and issue a warning or undefine the
// macros.
//
// Still, Windows defines min() and max() in windef.h as part of the regular
// Windows system interfaces and many other Windows APIs depend on these
// macros being available. To prevent the macro expansion of min/max and to
// make Eigen compatible with the Windows environment all function calls of
// std::min() and std::max() have to be written with parenthesis around the
// function name.
//
// All STL headers used by Eigen should be included here. Because main.h is
// included before any Eigen header and because the STL headers are guarded
// against multiple inclusions, no STL header will see our own min/max macro
// definitions.
#include <limits>
#include <algorithm>
// Disable ICC's std::complex operator specializations so we can use our own.
#define _OVERRIDE_COMPLEX_SPECIALIZATION_ 1
#include <complex>
#include <deque>
#include <queue>
#include <cassert>
#include <list>
#if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
#include <random>
#include <chrono>
#ifdef EIGEN_USE_THREADS
#include <future>
#endif
#endif
// Configure GPU.
#if defined(EIGEN_USE_HIP)
#if defined(__HIPCC__) && !defined(EIGEN_NO_HIP)
#define EIGEN_HIPCC __HIPCC__
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
#elif defined(__CUDACC__) && !defined(EIGEN_NO_CUDA)
#define EIGEN_CUDACC __CUDACC__
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#if CUDA_VERSION >= 7050
#include <cuda_fp16.h>
#endif
#endif
#if defined(EIGEN_CUDACC) || defined(EIGEN_HIPCC)
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#endif
// To test that all calls from Eigen code to std::min() and std::max() are
// protected by parenthesis against macro expansion, the min()/max() macros
// are defined here and any not-parenthesized min/max call will cause a
// compiler error.
#if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL)
//
// HIP header files include the following files
// <thread>
// <regex>
// <unordered_map>
// which seem to contain not-parenthesized calls to "max"/"min", triggering the following check and causing the compile to fail
//
// Including those header files before the following macro definition for "min" / "max", only partially resolves the issue
// This is because other HIP header files also define "isnan" / "isinf" / "isfinite" functions, which are needed in other
// headers.
//
// So instead choosing to simply disable this check for HIP
//
#define min(A,B) please_protect_your_min_with_parentheses
#define max(A,B) please_protect_your_max_with_parentheses
#define isnan(X) please_protect_your_isnan_with_parentheses
#define isinf(X) please_protect_your_isinf_with_parentheses
#define isfinite(X) please_protect_your_isfinite_with_parentheses
#endif
// test possible conflicts
struct real {};
struct imag {};
#ifdef M_PI
#undef M_PI
#endif
#define M_PI please_use_EIGEN_PI_instead_of_M_PI
#define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
// B0 is defined in POSIX header termios.h
#define B0 FORBIDDEN_IDENTIFIER
// `I` may be defined by complex.h:
#define I FORBIDDEN_IDENTIFIER
// Unit tests calling Eigen's blas library must preserve the default blocking size
// to avoid troubles.
#ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
#define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
#endif
// shuts down ICC's remark #593: variable "XXX" was set but never used
#define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X)
#ifdef TEST_ENABLE_TEMPORARY_TRACKING
static long int nb_temporaries;
static long int nb_temporaries_on_assert = -1;
inline void on_temporary_creation(long int size) {
// here's a great place to set a breakpoint when debugging failures in this test!
if(size!=0) nb_temporaries++;
if(nb_temporaries_on_assert>0) assert(nb_temporaries<nb_temporaries_on_assert);
}
#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
nb_temporaries = 0; \
XPR; \
if(nb_temporaries!=(N)) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\
VERIFY( (#XPR) && nb_temporaries==(N) ); \
}
#endif
#include "split_test_helper.h"
#ifdef NDEBUG
#undef NDEBUG
#endif
// On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
#ifndef DEBUG
#define DEBUG
#endif
// bounds integer values for AltiVec
#if defined(__ALTIVEC__) || defined(__VSX__)
#define EIGEN_MAKING_DOCS
#endif
#define DEFAULT_REPEAT 10
namespace Eigen
{
static std::vector<std::string> g_test_stack;
// level == 0 <=> abort if test fail
// level >= 1 <=> warning message to std::cerr if test fail
static int g_test_level = 0;
static int g_repeat = 1;
static unsigned int g_seed = 0;
static bool g_has_set_repeat = false, g_has_set_seed = false;
class EigenTest
{
public:
EigenTest() : m_func(0) {}
EigenTest(const char* a_name, void (*func)(void))
: m_name(a_name), m_func(func)
{
get_registered_tests().push_back(this);
}
const std::string& name() const { return m_name; }
void operator()() const { m_func(); }
static const std::vector<EigenTest*>& all() { return get_registered_tests(); }
protected:
static std::vector<EigenTest*>& get_registered_tests()
{
static std::vector<EigenTest*>* ms_registered_tests = new std::vector<EigenTest*>();
return *ms_registered_tests;
}
std::string m_name;
void (*m_func)(void);
};
// Declare and register a test, e.g.:
// EIGEN_DECLARE_TEST(mytest) { ... }
// will create a function:
// void test_mytest() { ... }
// that will be automatically called.
#define EIGEN_DECLARE_TEST(X) \
void EIGEN_CAT(test_,X) (); \
static EigenTest EIGEN_CAT(test_handler_,X) (EIGEN_MAKESTRING(X), & EIGEN_CAT(test_,X)); \
void EIGEN_CAT(test_,X) ()
}
#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
// #define TRACK while()
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) && !defined(__SYCL_DEVICE_ONLY__)
#define EIGEN_EXCEPTIONS
#endif
#ifndef EIGEN_NO_ASSERTION_CHECKING
namespace Eigen
{
static const bool should_raise_an_assert = false;
// Used to avoid to raise two exceptions at a time in which
// case the exception is not properly caught.
// This may happen when a second exceptions is triggered in a destructor.
static bool no_more_assert = false;
static bool report_on_cerr_on_assert_failure = true;
struct eigen_assert_exception
{
eigen_assert_exception(void) {}
~eigen_assert_exception() { Eigen::no_more_assert = false; }
};
struct eigen_static_assert_exception
{
eigen_static_assert_exception(void) {}
~eigen_static_assert_exception() { Eigen::no_more_assert = false; }
};
}
// If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
// one should have been, then the list of executed assertions is printed out.
//
// EIGEN_DEBUG_ASSERTS is not enabled by default as it
// significantly increases the compilation time
// and might even introduce side effects that would hide
// some memory errors.
#ifdef EIGEN_DEBUG_ASSERTS
namespace Eigen
{
namespace internal
{
static bool push_assert = false;
}
static std::vector<std::string> eigen_assert_list;
}
#define eigen_assert(a) \
if( (!(a)) && (!no_more_assert) ) \
{ \
if(report_on_cerr_on_assert_failure) \
std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
Eigen::no_more_assert = true; \
EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
} \
else if (Eigen::internal::push_assert) \
{ \
eigen_assert_list.push_back(std::string(EIGEN_MAKESTRING(__FILE__) " (" EIGEN_MAKESTRING(__LINE__) ") : " #a) ); \
}
#ifdef EIGEN_EXCEPTIONS
#define VERIFY_RAISES_ASSERT(a) \
{ \
Eigen::no_more_assert = false; \
Eigen::eigen_assert_list.clear(); \
Eigen::internal::push_assert = true; \
Eigen::report_on_cerr_on_assert_failure = false; \
try { \
a; \
std::cerr << "One of the following asserts should have been triggered:\n"; \
for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \
std::cerr << " " << eigen_assert_list[ai] << "\n"; \
VERIFY(Eigen::should_raise_an_assert && # a); \
} catch (Eigen::eigen_assert_exception) { \
Eigen::internal::push_assert = false; VERIFY(true); \
} \
Eigen::report_on_cerr_on_assert_failure = true; \
Eigen::internal::push_assert = false; \
}
#endif //EIGEN_EXCEPTIONS
#elif !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY) // EIGEN_DEBUG_ASSERTS
// see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
#define eigen_assert(a) \
if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
{ \
Eigen::no_more_assert = true; \
if(report_on_cerr_on_assert_failure) \
eigen_plain_assert(a); \
else \
EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
}
#ifdef EIGEN_EXCEPTIONS
#define VERIFY_RAISES_ASSERT(a) { \
Eigen::no_more_assert = false; \
Eigen::report_on_cerr_on_assert_failure = false; \
try { \
a; \
VERIFY(Eigen::should_raise_an_assert && # a); \
} \
catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \
Eigen::report_on_cerr_on_assert_failure = true; \
}
#endif // EIGEN_EXCEPTIONS
#endif // EIGEN_DEBUG_ASSERTS
#if defined(TEST_CHECK_STATIC_ASSERTIONS) && defined(EIGEN_EXCEPTIONS)
#define EIGEN_STATIC_ASSERT(a,MSG) \
if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
{ \
Eigen::no_more_assert = true; \
if(report_on_cerr_on_assert_failure) \
eigen_plain_assert((a) && #MSG); \
else \
EIGEN_THROW_X(Eigen::eigen_static_assert_exception()); \
}
#define VERIFY_RAISES_STATIC_ASSERT(a) { \
Eigen::no_more_assert = false; \
Eigen::report_on_cerr_on_assert_failure = false; \
try { \
a; \
VERIFY(Eigen::should_raise_an_assert && # a); \
} \
catch (Eigen::eigen_static_assert_exception&) { VERIFY(true); } \
Eigen::report_on_cerr_on_assert_failure = true; \
}
#endif // TEST_CHECK_STATIC_ASSERTIONS
#ifndef VERIFY_RAISES_ASSERT
#define VERIFY_RAISES_ASSERT(a) \
std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n";
#endif
#ifndef VERIFY_RAISES_STATIC_ASSERT
#define VERIFY_RAISES_STATIC_ASSERT(a) \
std::cout << "Can't VERIFY_RAISES_STATIC_ASSERT( " #a " ) with exceptions disabled\n";
#endif
#if !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY)
#define EIGEN_USE_CUSTOM_ASSERT
#endif
#else // EIGEN_NO_ASSERTION_CHECKING
#define VERIFY_RAISES_ASSERT(a) {}
#define VERIFY_RAISES_STATIC_ASSERT(a) {}
#endif // EIGEN_NO_ASSERTION_CHECKING
#define EIGEN_INTERNAL_DEBUGGING
#include <Eigen/QR> // required for createRandomPIMatrixOfRank and generateRandomMatrixSvs
inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
{
if (!condition)
{
if(Eigen::g_test_level>0)
std::cerr << "WARNING: ";
std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")"
<< std::endl << " " << condition_as_string << std::endl;
std::cerr << "Stack:\n";
const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
for(int i=test_stack_size-1; i>=0; --i)
std::cerr << " - " << Eigen::g_test_stack[i] << "\n";
std::cerr << "\n";
if(Eigen::g_test_level==0)
abort();
}
}
#define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a))
#define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a >= b))
#define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a <= b))
#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true))
#define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false))
#define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b))
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
#define VERIFY_IS_CWISE_EQUAL(a, b) VERIFY(test_isCwiseApprox(a, b, true))
#define VERIFY_IS_CWISE_APPROX(a, b) VERIFY(test_isCwiseApprox(a, b, false))
#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
#define STATIC_CHECK(COND) EIGEN_STATIC_ASSERT( (COND) , EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT )
#define CALL_SUBTEST(FUNC) do { \
g_test_stack.push_back(EIGEN_MAKESTRING(FUNC)); \
FUNC; \
g_test_stack.pop_back(); \
} while (0)
namespace Eigen {
// Forward declarations to avoid ICC warnings
template<typename T, typename U>
bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true);
template<typename MatrixType>
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m);
template<typename PermutationVectorType>
void randomPermutationVector(PermutationVectorType& v, Index size);
template<typename MatrixType>
MatrixType generateRandomUnitaryMatrix(const Index dim);
template<typename MatrixType, typename RealScalarVectorType>
void generateRandomMatrixSvs(const RealScalarVectorType &svs, const Index rows, const Index cols, MatrixType& M);
template<typename VectorType, typename RealScalar>
VectorType setupRandomSvs(const Index dim, const RealScalar max);
template<typename VectorType, typename RealScalar>
VectorType setupRangeSvs(const Index dim, const RealScalar min, const RealScalar max);
} // end namespace Eigen
// Forward declaration to avoid ICC warnings
template<typename T> std::string type_name();
namespace Eigen {
template<typename T1,typename T2>
typename internal::enable_if<internal::is_same<T1,T2>::value,bool>::type
is_same_type(const T1&, const T2&)
{
return true;
}
template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
template<> inline float test_precision<float>() { return 1e-3f; }
template<> inline double test_precision<double>() { return 1e-6; }
template<> inline long double test_precision<long double>() { return 1e-6l; }
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); }
#define EIGEN_TEST_SCALAR_TEST_OVERLOAD(TYPE) \
inline bool test_isApprox(TYPE a, TYPE b) \
{ return internal::isApprox(a, b, test_precision<TYPE>()); } \
inline bool test_isMuchSmallerThan(TYPE a, TYPE b) \
{ return internal::isMuchSmallerThan(a, b, test_precision<TYPE>()); } \
inline bool test_isApproxOrLessThan(TYPE a, TYPE b) \
{ return internal::isApproxOrLessThan(a, b, test_precision<TYPE>()); }
EIGEN_TEST_SCALAR_TEST_OVERLOAD(short)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(int)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned int)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(long)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long)
#if EIGEN_HAS_CXX11
EIGEN_TEST_SCALAR_TEST_OVERLOAD(long long)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long long)
#endif
EIGEN_TEST_SCALAR_TEST_OVERLOAD(float)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(double)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(half)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(bfloat16)
#undef EIGEN_TEST_SCALAR_TEST_OVERLOAD
#ifndef EIGEN_TEST_NO_COMPLEX
inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
{ return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
{ return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
#ifndef EIGEN_TEST_NO_LONGDOUBLE
inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b)
{ return internal::isApprox(a, b, test_precision<std::complex<long double> >()); }
inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b)
{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); }
#endif
#endif
#ifndef EIGEN_TEST_NO_LONGDOUBLE
inline bool test_isApprox(const long double& a, const long double& b)
{
bool ret = internal::isApprox(a, b, test_precision<long double>());
if (!ret) std::cerr
<< std::endl << " actual = " << a
<< std::endl << " expected = " << b << std::endl << std::endl;
return ret;
}
inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
{ return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
{ return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
#endif // EIGEN_TEST_NO_LONGDOUBLE
// test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox.
template<typename T1,typename T2>
typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b)
{
using std::sqrt;
typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar;
typename internal::nested_eval<T1,2>::type ea(a.derived());
typename internal::nested_eval<T2,2>::type eb(b.derived());
return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum())));
}
template<typename T1,typename T2>
typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0)
{
return test_relative_error(a.coeffs(), b.coeffs());
}
template<typename T1,typename T2>
typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0)
{
return test_relative_error(a.matrix(), b.matrix());
}
template<typename S, int D>
S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b)
{
return test_relative_error(a.vector(), b.vector());
}
template <typename S, int D, int O>
S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b)
{
return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin()));
}
template <typename S, int D>
S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b)
{
return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)()));
}
template<typename Derived> class SparseMatrixBase;
template<typename T1,typename T2>
typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b)
{
return test_relative_error(a,b.toDense());
}
template<typename Derived> class SparseMatrixBase;
template<typename T1,typename T2>
typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b)
{
return test_relative_error(a.toDense(),b);
}
template<typename Derived> class SparseMatrixBase;
template<typename T1,typename T2>
typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b)
{
return test_relative_error(a.toDense(),b.toDense());
}
template<typename T1,typename T2>
typename NumTraits<typename NumTraits<T1>::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0)
{
typedef typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar;
return numext::sqrt(RealScalar(numext::abs2(a-b))/(numext::mini)(RealScalar(numext::abs2(a)),RealScalar(numext::abs2(b))));
}
template<typename T>
T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b)
{
return test_relative_error(a.angle(), b.angle());
}
template<typename T>
T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b)
{
return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis()));
}
template<typename Type1, typename Type2>
inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
{
return a.isApprox(b, test_precision<typename Type1::Scalar>());
}
// get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions
template<typename T>
typename NumTraits<typename T::Scalar>::Real get_test_precision(const T&, const typename T::Scalar* = 0)
{
return test_precision<typename NumTraits<typename T::Scalar>::Real>();
}
template<typename T>
typename NumTraits<T>::Real get_test_precision(const T&,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0)
{
return test_precision<typename NumTraits<T>::Real>();
}
// verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails.
template<typename Type1, typename Type2>
inline bool verifyIsApprox(const Type1& a, const Type2& b)
{
bool ret = test_isApprox(a,b);
if(!ret)
{
std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a,b) << std::endl;
}
return ret;
}
// The idea behind this function is to compare the two scalars a and b where
// the scalar ref is a hint about the expected order of magnitude of a and b.
// WARNING: the scalar a and b must be positive
// Therefore, if for some reason a and b are very small compared to ref,
// we won't issue a false negative.
// This test could be: abs(a-b) <= eps * ref
// However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
template<typename Scalar,typename ScalarRef>
inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
{
return test_isApprox(a+ref, b+ref);
}
template<typename Derived1, typename Derived2>
inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
const MatrixBase<Derived2>& m2)
{
return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
}
template<typename Derived>
inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
{
return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
}
template<typename Derived>
inline bool test_isUnitary(const MatrixBase<Derived>& m)
{
return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
}
// Checks component-wise, works with infs and nans.
template<typename Derived1, typename Derived2>
bool test_isCwiseApprox(const DenseBase<Derived1>& m1,
const DenseBase<Derived2>& m2,
bool exact) {
if (m1.rows() != m2.rows()) {
return false;
}
if (m1.cols() != m2.cols()) {
return false;
}
for (Index r = 0; r < m1.rows(); ++r) {
for (Index c = 0; c < m1.cols(); ++c) {
if (m1(r, c) != m2(r, c)
&& !((numext::isnan)(m1(r, c)) && (numext::isnan)(m2(r, c)))
&& (exact || !test_isApprox(m1(r, c), m2(r, c)))) {
return false;
}
}
}
return true;
}
template<typename T, typename U>
bool test_is_equal(const T& actual, const U& expected, bool expect_equal)
{
if ((actual==expected) == expect_equal)
return true;
// false:
std::cerr
<< "\n actual = " << actual
<< "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n";
return false;
}
// Forward declaration to avoid ICC warning
template<typename MatrixType>
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m);
/**
* Creates a random partial isometry matrix of given rank.
*
* A partial isometry is a matrix all of whose singular values are either 0 or 1.
* This is very useful to test rank-revealing algorithms.
*
* @tparam MatrixType type of random partial isometry matrix
* @param desired_rank rank requested for the random partial isometry matrix
* @param rows row dimension of requested random partial isometry matrix
* @param cols column dimension of requested random partial isometry matrix
* @param m random partial isometry matrix
*/
template<typename MatrixType>
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m)
{
typedef typename internal::traits<MatrixType>::Scalar Scalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, Dynamic, 1> VectorType;
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
if(desired_rank == 0)
{
m.setZero(rows,cols);
return;
}
if(desired_rank == 1)
{
// here we normalize the vectors to get a partial isometry
m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
return;
}
MatrixAType a = MatrixAType::Random(rows,rows);
MatrixType d = MatrixType::Identity(rows,cols);
MatrixBType b = MatrixBType::Random(cols,cols);
// set the diagonal such that only desired_rank non-zero entries remain
const Index diag_size = (std::min)(d.rows(),d.cols());
if(diag_size != desired_rank)
d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
HouseholderQR<MatrixAType> qra(a);
HouseholderQR<MatrixBType> qrb(b);
m = qra.householderQ() * d * qrb.householderQ();
}
// Forward declaration to avoid ICC warning
template<typename PermutationVectorType>
void randomPermutationVector(PermutationVectorType& v, Index size);
/**
* Generate random permutation vector.
*
* @tparam PermutationVectorType type of vector used to store permutation
* @param v permutation vector
* @param size length of permutation vector
*/
template<typename PermutationVectorType>
void randomPermutationVector(PermutationVectorType& v, Index size)
{
typedef typename PermutationVectorType::Scalar Scalar;
v.resize(size);
for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
if(size == 1) return;
for(Index n = 0; n < 3 * size; ++n)
{
Index i = internal::random<Index>(0, size-1);
Index j;
do j = internal::random<Index>(0, size-1); while(j==i);
std::swap(v(i), v(j));
}
}
/**
* Generate a random unitary matrix of prescribed dimension.
*
* The algorithm is using a random Householder sequence to produce
* a random unitary matrix.
*
* @tparam MatrixType type of matrix to generate
* @param dim row and column dimension of the requested square matrix
* @return random unitary matrix
*/
template<typename MatrixType>
MatrixType generateRandomUnitaryMatrix(const Index dim)
{
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef Matrix<Scalar, Dynamic, 1> VectorType;
MatrixType v = MatrixType::Identity(dim, dim);
VectorType h = VectorType::Zero(dim);
for (Index i = 0; i < dim; ++i)
{
v.col(i).tail(dim - i - 1) = VectorType::Random(dim - i - 1);
h(i) = 2 / v.col(i).tail(dim - i).squaredNorm();
}
const Eigen::HouseholderSequence<MatrixType, VectorType> HSeq(v, h);
return MatrixType(HSeq);
}
/**
* Generation of random matrix with prescribed singular values.
*
* We generate random matrices with given singular values by setting up
* a singular value decomposition. By choosing the number of zeros as
* singular values we can specify the rank of the matrix.
* Moreover, we also control its spectral norm, which is the largest
* singular value, as well as its condition number with respect to the
* l2-norm, which is the quotient of the largest and smallest singular
* value.
*
* Reference: For details on the method see e.g. Section 8.1 (pp. 62 f) in
*
* C. C. Paige, M. A. Saunders,
* LSQR: An algorithm for sparse linear equations and sparse least squares.
* ACM Transactions on Mathematical Software 8(1), pp. 43-71, 1982.
* https://web.stanford.edu/group/SOL/software/lsqr/lsqr-toms82a.pdf
*
* and also the LSQR webpage https://web.stanford.edu/group/SOL/software/lsqr/.
*
* @tparam MatrixType matrix type to generate
* @tparam RealScalarVectorType vector type with real entries used for singular values
* @param svs vector of desired singular values
* @param rows row dimension of requested random matrix
* @param cols column dimension of requested random matrix
* @param M generated matrix with prescribed singular values
*/
template<typename MatrixType, typename RealScalarVectorType>
void generateRandomMatrixSvs(const RealScalarVectorType &svs, const Index rows, const Index cols, MatrixType& M)
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
const Index min_dim = (std::min)(rows, cols);
const MatrixAType U = generateRandomUnitaryMatrix<MatrixAType>(rows);
const MatrixBType V = generateRandomUnitaryMatrix<MatrixBType>(cols);
M = U.block(0, 0, rows, min_dim) * svs.asDiagonal() * V.block(0, 0, cols, min_dim).transpose();
}
/**
* Setup a vector of random singular values with prescribed upper limit.
* For use with generateRandomMatrixSvs().
*
* Singular values are non-negative real values. By convention (to be consistent with
* singular value decomposition) we sort them in decreasing order.
*
* This strategy produces random singular values in the range [0, max], in particular
* the singular values can be zero or arbitrarily close to zero.
*
* @tparam VectorType vector type with real entries used for singular values
* @tparam RealScalar data type used for real entry
* @param dim number of singular values to generate
* @param max upper bound for singular values
* @return vector of singular values
*/
template<typename VectorType, typename RealScalar>
VectorType setupRandomSvs(const Index dim, const RealScalar max)
{
VectorType svs = max / RealScalar(2) * (VectorType::Random(dim) + VectorType::Ones(dim));
std::sort(svs.begin(), svs.end(), std::greater<RealScalar>());
return svs;
}
/**
* Setup a vector of random singular values with prescribed range.
* For use with generateRandomMatrixSvs().
*
* Singular values are non-negative real values. By convention (to be consistent with
* singular value decomposition) we sort them in decreasing order.
*
* For dim > 1 this strategy generates a vector with largest entry max, smallest entry
* min, and remaining entries in the range [min, max]. For dim == 1 the only entry is
* min.
*
* @tparam VectorType vector type with real entries used for singular values
* @tparam RealScalar data type used for real entry
* @param dim number of singular values to generate
* @param min smallest singular value to use
* @param max largest singular value to use
* @return vector of singular values
*/
template<typename VectorType, typename RealScalar>
VectorType setupRangeSvs(const Index dim, const RealScalar min, const RealScalar max)
{
VectorType svs = VectorType::Random(dim);
if(dim == 0)
return svs;
if(dim == 1)
{
svs(0) = min;
return svs;
}
std::sort(svs.begin(), svs.end(), std::greater<RealScalar>());
// scale to range [min, max]
const RealScalar c_min = svs(dim - 1), c_max = svs(0);
svs = (svs - VectorType::Constant(dim, c_min)) / (c_max - c_min);
return min * (VectorType::Ones(dim) - svs) + max * svs;
}
/**
* Check if number is "not a number" (NaN).
*
* @tparam T input type
* @param x input value
* @return true, if input value is "not a number" (NaN)
*/
template<typename T> bool isNotNaN(const T& x)
{
return x==x;
}
/**
* Check if number is plus infinity.
*
* @tparam T input type
* @param x input value
* @return true, if input value is plus infinity
*/
template<typename T> bool isPlusInf(const T& x)
{
return x > NumTraits<T>::highest();
}
/**
* Check if number is minus infinity.
*
* @tparam T input type
* @param x input value
* @return true, if input value is minus infinity
*/
template<typename T> bool isMinusInf(const T& x)
{
return x < NumTraits<T>::lowest();
}
} // end namespace Eigen
template<typename T> struct GetDifferentType;
template<> struct GetDifferentType<float> { typedef double type; };
template<> struct GetDifferentType<double> { typedef float type; };
template<typename T> struct GetDifferentType<std::complex<T> >
{ typedef std::complex<typename GetDifferentType<T>::type> type; };
template<typename T> std::string type_name() { return "other"; }
template<> std::string type_name<float>() { return "float"; }
template<> std::string type_name<double>() { return "double"; }
template<> std::string type_name<long double>() { return "long double"; }
template<> std::string type_name<int>() { return "int"; }
template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
template<> std::string type_name<std::complex<long double> >() { return "complex<long double>"; }
template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
using namespace Eigen;
/**
* Set number of repetitions for unit test from input string.
*
* @param str input string
*/
inline void set_repeat_from_string(const char *str)
{
errno = 0;
g_repeat = int(strtoul(str, 0, 10));
if(errno || g_repeat <= 0)
{
std::cout << "Invalid repeat value " << str << std::endl;
exit(EXIT_FAILURE);
}
g_has_set_repeat = true;
}
/**
* Set seed for randomized unit tests from input string.
*
* @param str input string
*/
inline void set_seed_from_string(const char *str)
{
errno = 0;
g_seed = int(strtoul(str, 0, 10));
if(errno || g_seed == 0)
{
std::cout << "Invalid seed value " << str << std::endl;
exit(EXIT_FAILURE);
}
g_has_set_seed = true;
}
int main(int argc, char *argv[])
{
g_has_set_repeat = false;
g_has_set_seed = false;
bool need_help = false;
for(int i = 1; i < argc; i++)
{
if(argv[i][0] == 'r')
{
if(g_has_set_repeat)
{
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
return 1;
}
set_repeat_from_string(argv[i]+1);
}
else if(argv[i][0] == 's')
{
if(g_has_set_seed)
{
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
return 1;
}
set_seed_from_string(argv[i]+1);
}
else
{
need_help = true;
}
}
if(need_help)
{
std::cout << "This test application takes the following optional arguments:" << std::endl;
std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl;
std::cout << std::endl;
std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
std::cout << "will be used as default values for these parameters." << std::endl;
return 1;
}
char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
if(!g_has_set_repeat && env_EIGEN_REPEAT)
set_repeat_from_string(env_EIGEN_REPEAT);
char *env_EIGEN_SEED = getenv("EIGEN_SEED");
if(!g_has_set_seed && env_EIGEN_SEED)
set_seed_from_string(env_EIGEN_SEED);
if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
std::stringstream ss;
ss << "Seed: " << g_seed;
g_test_stack.push_back(ss.str());
srand(g_seed);
std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
VERIFY(EigenTest::all().size()>0);
for(std::size_t i=0; i<EigenTest::all().size(); ++i)
{
const EigenTest& current_test = *EigenTest::all()[i];
Eigen::g_test_stack.push_back(current_test.name());
current_test();
Eigen::g_test_stack.pop_back();
}
return 0;
}
// These warning are disabled here such that they are still ON when parsing Eigen's header files.
#if defined __INTEL_COMPILER
// remark #383: value copied to temporary, reference to temporary used
// -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
// remark #1418: external function definition with no prior declaration
// -> this warning is raised for all our test functions. Declaring them static would fix the issue.
// warning #279: controlling expression is constant
// remark #1572: floating-point equality and inequality comparisons are unreliable
#pragma warning disable 279 383 1418 1572
#endif
#ifdef _MSC_VER
// 4503 - decorated name length exceeded, name was truncated
#pragma warning( disable : 4503)
#endif
#include "gpu_test_helper.h"