mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
149 lines
4.5 KiB
C++
149 lines
4.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/StdVector>
|
|
#include <Eigen/Geometry>
|
|
|
|
template<typename MatrixType>
|
|
void check_stdvector_matrix(const MatrixType& m)
|
|
{
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols);
|
|
std::vector<MatrixType,Eigen::aligned_allocator<MatrixType> > v(10, MatrixType(rows,cols)), w(20, y);
|
|
v[5] = x;
|
|
w[6] = v[5];
|
|
VERIFY_IS_APPROX(w[6], v[5]);
|
|
v = w;
|
|
for(int i = 0; i < 20; i++)
|
|
{
|
|
VERIFY_IS_APPROX(w[i], v[i]);
|
|
}
|
|
|
|
v.resize(21);
|
|
v[20] = x;
|
|
VERIFY_IS_APPROX(v[20], x);
|
|
v.resize(22,y);
|
|
VERIFY_IS_APPROX(v[21], y);
|
|
v.push_back(x);
|
|
VERIFY_IS_APPROX(v[22], x);
|
|
VERIFY((internal::UIntPtr)&(v[22]) == (internal::UIntPtr)&(v[21]) + sizeof(MatrixType));
|
|
|
|
// do a lot of push_back such that the vector gets internally resized
|
|
// (with memory reallocation)
|
|
MatrixType* ref = &w[0];
|
|
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
|
|
v.push_back(w[i%w.size()]);
|
|
for(unsigned int i=23; i<v.size(); ++i)
|
|
{
|
|
VERIFY(v[i]==w[(i-23)%w.size()]);
|
|
}
|
|
}
|
|
|
|
template<typename TransformType>
|
|
void check_stdvector_transform(const TransformType&)
|
|
{
|
|
typedef typename TransformType::MatrixType MatrixType;
|
|
TransformType x(MatrixType::Random()), y(MatrixType::Random());
|
|
std::vector<TransformType,Eigen::aligned_allocator<TransformType> > v(10), w(20, y);
|
|
v[5] = x;
|
|
w[6] = v[5];
|
|
VERIFY_IS_APPROX(w[6], v[5]);
|
|
v = w;
|
|
for(int i = 0; i < 20; i++)
|
|
{
|
|
VERIFY_IS_APPROX(w[i], v[i]);
|
|
}
|
|
|
|
v.resize(21);
|
|
v[20] = x;
|
|
VERIFY_IS_APPROX(v[20], x);
|
|
v.resize(22,y);
|
|
VERIFY_IS_APPROX(v[21], y);
|
|
v.push_back(x);
|
|
VERIFY_IS_APPROX(v[22], x);
|
|
VERIFY((internal::UIntPtr)&(v[22]) == (internal::UIntPtr)&(v[21]) + sizeof(TransformType));
|
|
|
|
// do a lot of push_back such that the vector gets internally resized
|
|
// (with memory reallocation)
|
|
TransformType* ref = &w[0];
|
|
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
|
|
v.push_back(w[i%w.size()]);
|
|
for(unsigned int i=23; i<v.size(); ++i)
|
|
{
|
|
VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix());
|
|
}
|
|
}
|
|
|
|
template<typename QuaternionType>
|
|
void check_stdvector_quaternion(const QuaternionType&)
|
|
{
|
|
typedef typename QuaternionType::Coefficients Coefficients;
|
|
QuaternionType x(Coefficients::Random()), y(Coefficients::Random());
|
|
std::vector<QuaternionType,Eigen::aligned_allocator<QuaternionType> > v(10), w(20, y);
|
|
v[5] = x;
|
|
w[6] = v[5];
|
|
VERIFY_IS_APPROX(w[6], v[5]);
|
|
v = w;
|
|
for(int i = 0; i < 20; i++)
|
|
{
|
|
VERIFY_IS_APPROX(w[i], v[i]);
|
|
}
|
|
|
|
v.resize(21);
|
|
v[20] = x;
|
|
VERIFY_IS_APPROX(v[20], x);
|
|
v.resize(22,y);
|
|
VERIFY_IS_APPROX(v[21], y);
|
|
v.push_back(x);
|
|
VERIFY_IS_APPROX(v[22], x);
|
|
VERIFY((internal::UIntPtr)&(v[22]) == (internal::UIntPtr)&(v[21]) + sizeof(QuaternionType));
|
|
|
|
// do a lot of push_back such that the vector gets internally resized
|
|
// (with memory reallocation)
|
|
QuaternionType* ref = &w[0];
|
|
for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
|
|
v.push_back(w[i%w.size()]);
|
|
for(unsigned int i=23; i<v.size(); ++i)
|
|
{
|
|
VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs());
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(stdvector)
|
|
{
|
|
// some non vectorizable fixed sizes
|
|
CALL_SUBTEST_1(check_stdvector_matrix(Vector2f()));
|
|
CALL_SUBTEST_1(check_stdvector_matrix(Matrix3f()));
|
|
CALL_SUBTEST_2(check_stdvector_matrix(Matrix3d()));
|
|
|
|
// some vectorizable fixed sizes
|
|
CALL_SUBTEST_1(check_stdvector_matrix(Matrix2f()));
|
|
CALL_SUBTEST_1(check_stdvector_matrix(Vector4f()));
|
|
CALL_SUBTEST_1(check_stdvector_matrix(Matrix4f()));
|
|
CALL_SUBTEST_2(check_stdvector_matrix(Matrix4d()));
|
|
|
|
// some dynamic sizes
|
|
CALL_SUBTEST_3(check_stdvector_matrix(MatrixXd(1,1)));
|
|
CALL_SUBTEST_3(check_stdvector_matrix(VectorXd(20)));
|
|
CALL_SUBTEST_3(check_stdvector_matrix(RowVectorXf(20)));
|
|
CALL_SUBTEST_3(check_stdvector_matrix(MatrixXcf(10,10)));
|
|
|
|
// some Transform
|
|
CALL_SUBTEST_4(check_stdvector_transform(Projective2f()));
|
|
CALL_SUBTEST_4(check_stdvector_transform(Projective3f()));
|
|
CALL_SUBTEST_4(check_stdvector_transform(Projective3d()));
|
|
//CALL_SUBTEST(heck_stdvector_transform(Projective4d()));
|
|
|
|
// some Quaternion
|
|
CALL_SUBTEST_5(check_stdvector_quaternion(Quaternionf()));
|
|
CALL_SUBTEST_5(check_stdvector_quaternion(Quaterniond()));
|
|
}
|