mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
500 lines
19 KiB
C++
500 lines
19 KiB
C++
|
|
#include "main.h"
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename Lhs,typename Rhs>
|
|
const Product<Lhs,Rhs>
|
|
prod(const Lhs& lhs, const Rhs& rhs)
|
|
{
|
|
return Product<Lhs,Rhs>(lhs,rhs);
|
|
}
|
|
|
|
template<typename Lhs,typename Rhs>
|
|
const Product<Lhs,Rhs,LazyProduct>
|
|
lazyprod(const Lhs& lhs, const Rhs& rhs)
|
|
{
|
|
return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
EIGEN_STRONG_INLINE
|
|
DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
|
|
{
|
|
call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
|
|
return dst.const_cast_derived();
|
|
}
|
|
|
|
template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
|
|
EIGEN_STRONG_INLINE
|
|
const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
|
|
{
|
|
call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
|
|
return dst.expression();
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
EIGEN_STRONG_INLINE
|
|
DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
|
|
{
|
|
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
|
|
eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
|
|
: (dst.rows() == src.rows() && dst.cols() == src.cols())))
|
|
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
|
|
#else
|
|
dst.const_cast_derived().resizeLike(src.derived());
|
|
#endif
|
|
|
|
call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
|
|
return dst.const_cast_derived();
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
|
|
{
|
|
typedef typename DstXprType::Scalar Scalar;
|
|
call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
|
|
{
|
|
typedef typename DstXprType::Scalar Scalar;
|
|
call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
|
|
{
|
|
typedef typename DstXprType::Scalar Scalar;
|
|
call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
|
|
{
|
|
typedef typename DstXprType::Scalar Scalar;
|
|
call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
|
|
}
|
|
|
|
template<typename DstXprType, typename SrcXprType>
|
|
void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
|
|
{
|
|
typedef typename DstXprType::Scalar Scalar;
|
|
call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
|
|
}
|
|
|
|
namespace internal {
|
|
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
|
|
EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
|
|
{
|
|
call_assignment_no_alias(dst.expression(), src, func);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }
|
|
|
|
using namespace std;
|
|
|
|
#define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
|
|
#define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());
|
|
|
|
EIGEN_DECLARE_TEST(evaluators)
|
|
{
|
|
// Testing Matrix evaluator and Transpose
|
|
Vector2d v = Vector2d::Random();
|
|
const Vector2d v_const(v);
|
|
Vector2d v2;
|
|
RowVector2d w;
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR(v2, v);
|
|
VERIFY_IS_APPROX_EVALUATOR(v2, v_const);
|
|
|
|
// Testing Transpose
|
|
VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
|
|
VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());
|
|
|
|
copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
|
|
VERIFY_IS_APPROX(w,v.transpose().eval());
|
|
|
|
copy_using_evaluator(w.transpose(), v_const);
|
|
VERIFY_IS_APPROX(w,v_const.transpose().eval());
|
|
|
|
// Testing Array evaluator
|
|
{
|
|
ArrayXXf a(2,3);
|
|
ArrayXXf b(3,2);
|
|
a << 1,2,3, 4,5,6;
|
|
const ArrayXXf a_const(a);
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());
|
|
|
|
// Testing CwiseNullaryOp evaluator
|
|
copy_using_evaluator(w, RowVector2d::Random());
|
|
VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
|
|
|
|
// mix CwiseNullaryOp and transpose
|
|
VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
|
|
}
|
|
|
|
{
|
|
// test product expressions
|
|
int s = internal::random<int>(1,100);
|
|
MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
|
|
a.setRandom();
|
|
b.setRandom();
|
|
c.setRandom();
|
|
d.setRandom();
|
|
VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
|
|
VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
|
|
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
|
|
VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
|
|
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
|
|
VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
|
|
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
|
|
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);
|
|
|
|
// check that prod works even with aliasing present
|
|
c = a*a;
|
|
copy_using_evaluator(a, prod(a,a));
|
|
VERIFY_IS_APPROX(a,c);
|
|
|
|
// check compound assignment of products
|
|
d = c;
|
|
add_assign_using_evaluator(c.noalias(), prod(a,b));
|
|
d.noalias() += a*b;
|
|
VERIFY_IS_APPROX(c, d);
|
|
|
|
d = c;
|
|
subtract_assign_using_evaluator(c.noalias(), prod(a,b));
|
|
d.noalias() -= a*b;
|
|
VERIFY_IS_APPROX(c, d);
|
|
}
|
|
|
|
{
|
|
// test product with all possible sizes
|
|
int s = internal::random<int>(1,100);
|
|
Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1);
|
|
Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4);
|
|
Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s);
|
|
Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1);
|
|
Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4);
|
|
Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s);
|
|
Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1);
|
|
Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4);
|
|
Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s);
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
|
|
VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
|
|
VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
|
|
}
|
|
|
|
{
|
|
ArrayXXf a(2,3);
|
|
ArrayXXf b(3,2);
|
|
a << 1,2,3, 4,5,6;
|
|
const ArrayXXf a_const(a);
|
|
|
|
// this does not work because Random is eval-before-nested:
|
|
// copy_using_evaluator(w, Vector2d::Random().transpose());
|
|
|
|
// test CwiseUnaryOp
|
|
VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
|
|
VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
|
|
VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
|
|
VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());
|
|
|
|
// test CwiseBinaryOp
|
|
VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
|
|
VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));
|
|
|
|
// dynamic matrices and arrays
|
|
MatrixXd mat1(6,6), mat2(6,6);
|
|
VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
|
|
VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
|
|
copy_using_evaluator(mat2.transpose(), mat1);
|
|
VERIFY_IS_APPROX(mat2.transpose(), mat1);
|
|
|
|
ArrayXXd arr1(6,6), arr2(6,6);
|
|
VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
|
|
|
|
// test automatic resizing
|
|
mat2.resize(3,3);
|
|
VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
|
|
arr2.resize(9,9);
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
|
|
|
|
// test direct traversal
|
|
Matrix3f m3;
|
|
Array33f a3;
|
|
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
|
|
// TODO: find a way to test direct traversal with array
|
|
VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
|
|
VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
|
|
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary
|
|
VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block
|
|
|
|
// test linear traversal
|
|
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
|
|
VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
|
|
VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
|
|
VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
|
|
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
|
|
|
|
// test inner vectorization
|
|
Matrix4f m4, m4src = Matrix4f::Random();
|
|
Array44f a4, a4src = Matrix4f::Random();
|
|
VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
|
|
VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
|
|
VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
|
|
// TODO: find out why Matrix4f::Zero() does not allow inner vectorization
|
|
VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
|
|
VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
|
|
|
|
// test linear vectorization
|
|
MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
|
|
ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
|
|
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
|
|
VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
|
|
VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
|
|
VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
|
|
VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
|
|
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
|
|
|
|
// test blocks and slice vectorization
|
|
VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
|
|
VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));
|
|
|
|
Matrix4f m4ref = m4;
|
|
copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
|
|
m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
|
|
VERIFY_IS_APPROX(m4, m4ref);
|
|
|
|
mX.setIdentity(20,20);
|
|
MatrixXf mXref = MatrixXf::Identity(20,20);
|
|
mXsrc = MatrixXf::Random(9,12);
|
|
copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
|
|
mXref.block(4, 4, 9, 12) = mXsrc;
|
|
VERIFY_IS_APPROX(mX, mXref);
|
|
|
|
// test Map
|
|
const float raw[3] = {1,2,3};
|
|
float buffer[3] = {0,0,0};
|
|
Vector3f v3;
|
|
Array3f a3f;
|
|
VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
|
|
VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
|
|
Vector3f::Map(buffer) = 2*v3;
|
|
VERIFY(buffer[0] == 2);
|
|
VERIFY(buffer[1] == 4);
|
|
VERIFY(buffer[2] == 6);
|
|
|
|
// test CwiseUnaryView
|
|
mat1.setRandom();
|
|
mat2.setIdentity();
|
|
MatrixXcd matXcd(6,6), matXcd_ref(6,6);
|
|
copy_using_evaluator(matXcd.real(), mat1);
|
|
copy_using_evaluator(matXcd.imag(), mat2);
|
|
matXcd_ref.real() = mat1;
|
|
matXcd_ref.imag() = mat2;
|
|
VERIFY_IS_APPROX(matXcd, matXcd_ref);
|
|
|
|
// test Select
|
|
VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));
|
|
|
|
// test Replicate
|
|
mXsrc = MatrixXf::Random(6, 6);
|
|
VectorXf vX = VectorXf::Random(6);
|
|
mX.resize(6, 6);
|
|
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
|
|
matXcd.resize(12, 12);
|
|
VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
|
|
VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));
|
|
|
|
// test partial reductions
|
|
VectorXd vec1(6);
|
|
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
|
|
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());
|
|
|
|
// test MatrixWrapper and ArrayWrapper
|
|
mat1.setRandom(6,6);
|
|
arr1.setRandom(6,6);
|
|
VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
|
|
VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
|
|
mat2.array() = arr1 * arr1;
|
|
VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
|
|
arr2.matrix() = MatrixXd::Identity(6,6);
|
|
VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());
|
|
|
|
// test Reverse
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
|
|
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
|
|
arr2.reverse() = arr1;
|
|
VERIFY_IS_APPROX(arr2, arr1.reverse());
|
|
mat2.array() = mat1.array().reverse();
|
|
VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());
|
|
|
|
// test Diagonal
|
|
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
|
|
vec1.resize(5);
|
|
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
|
|
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
|
|
vec1.setRandom();
|
|
|
|
mat2 = mat1;
|
|
copy_using_evaluator(mat1.diagonal(1), vec1);
|
|
mat2.diagonal(1) = vec1;
|
|
VERIFY_IS_APPROX(mat1, mat2);
|
|
|
|
copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
|
|
mat2.diagonal<-1>() = mat2.diagonal(1);
|
|
VERIFY_IS_APPROX(mat1, mat2);
|
|
}
|
|
|
|
{
|
|
// test swapping
|
|
MatrixXd mat1, mat2, mat1ref, mat2ref;
|
|
mat1ref = mat1 = MatrixXd::Random(6, 6);
|
|
mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
|
|
swap_using_evaluator(mat1, mat2);
|
|
mat1ref.swap(mat2ref);
|
|
VERIFY_IS_APPROX(mat1, mat1ref);
|
|
VERIFY_IS_APPROX(mat2, mat2ref);
|
|
|
|
swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
|
|
mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
|
|
VERIFY_IS_APPROX(mat1, mat1ref);
|
|
VERIFY_IS_APPROX(mat2, mat2ref);
|
|
|
|
swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
|
|
mat1.row(2).swap(mat2.col(3).transpose());
|
|
VERIFY_IS_APPROX(mat1, mat1ref);
|
|
VERIFY_IS_APPROX(mat2, mat2ref);
|
|
}
|
|
|
|
{
|
|
// test compound assignment
|
|
const Matrix4d mat_const = Matrix4d::Random();
|
|
Matrix4d mat, mat_ref;
|
|
mat = mat_ref = Matrix4d::Identity();
|
|
add_assign_using_evaluator(mat, mat_const);
|
|
mat_ref += mat_const;
|
|
VERIFY_IS_APPROX(mat, mat_ref);
|
|
|
|
subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
|
|
mat_ref.row(1) -= 2*mat_ref.row(2);
|
|
VERIFY_IS_APPROX(mat, mat_ref);
|
|
|
|
const ArrayXXf arr_const = ArrayXXf::Random(5,3);
|
|
ArrayXXf arr, arr_ref;
|
|
arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
|
|
multiply_assign_using_evaluator(arr, arr_const);
|
|
arr_ref *= arr_const;
|
|
VERIFY_IS_APPROX(arr, arr_ref);
|
|
|
|
divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
|
|
arr_ref.row(1) /= (arr_ref.row(2) + 1);
|
|
VERIFY_IS_APPROX(arr, arr_ref);
|
|
}
|
|
|
|
{
|
|
// test triangular shapes
|
|
MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
|
|
A.setRandom();B.setRandom();
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
|
|
|
|
A.setRandom();B.setRandom();
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
|
|
|
|
A.setRandom();B.setRandom();
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
|
|
|
|
A.setRandom();B.setRandom();
|
|
C = B; C.triangularView<Upper>() = A;
|
|
copy_using_evaluator(B.triangularView<Upper>(), A);
|
|
VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
|
|
|
|
A.setRandom();B.setRandom();
|
|
C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
|
|
copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
|
|
VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
|
|
|
|
|
|
A.setRandom();B.setRandom();
|
|
C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
|
|
copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
|
|
VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
|
|
|
|
|
|
A.setRandom();B.setRandom(); C = B; D = A;
|
|
C.triangularView<Upper>().swap(D.triangularView<Upper>());
|
|
swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
|
|
VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
|
|
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
|
|
}
|
|
|
|
{
|
|
// test diagonal shapes
|
|
VectorXd d = VectorXd::Random(6);
|
|
MatrixXd A = MatrixXd::Random(6,6), B(6,6);
|
|
A.setRandom();B.setRandom();
|
|
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
|
|
VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
|
|
}
|
|
|
|
{
|
|
// test CoeffReadCost
|
|
Matrix4d a, b;
|
|
VERIFY_IS_EQUAL( get_cost(a), 1 );
|
|
VERIFY_IS_EQUAL( get_cost(a+b), 3);
|
|
VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
|
|
VERIFY_IS_EQUAL( get_cost(a*b), 1);
|
|
VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
|
|
VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
|
|
VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
|
|
VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
|
|
VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
|
|
}
|
|
}
|