mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
297 lines
13 KiB
C++
297 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType, typename Index, typename Scalar>
|
|
typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
|
block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
|
|
// check cwise-Functions:
|
|
VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
|
|
VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
|
|
|
|
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
|
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
|
|
|
return Scalar(0);
|
|
}
|
|
|
|
template<typename MatrixType, typename Index, typename Scalar>
|
|
typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
|
block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
|
|
return Scalar(0);
|
|
}
|
|
|
|
// Check at compile-time that T1==T2, and at runtime-time that a==b
|
|
template<typename T1,typename T2>
|
|
typename internal::enable_if<internal::is_same<T1,T2>::value,bool>::type
|
|
is_same_block(const T1& a, const T2& b)
|
|
{
|
|
return a.isApprox(b);
|
|
}
|
|
|
|
template<typename MatrixType> void block(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
|
typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::IsRowMajor?RowMajor:ColMajor> DynamicMatrixType;
|
|
typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m1_copy = m1,
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
ones = MatrixType::Ones(rows, cols);
|
|
VectorType v1 = VectorType::Random(rows);
|
|
|
|
Scalar s1 = internal::random<Scalar>();
|
|
|
|
Index r1 = internal::random<Index>(0,rows-1);
|
|
Index r2 = internal::random<Index>(r1,rows-1);
|
|
Index c1 = internal::random<Index>(0,cols-1);
|
|
Index c2 = internal::random<Index>(c1,cols-1);
|
|
|
|
block_real_only(m1, r1, r2, c1, c1, s1);
|
|
|
|
//check row() and col()
|
|
VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
|
|
//check operator(), both constant and non-constant, on row() and col()
|
|
m1 = m1_copy;
|
|
m1.row(r1) += s1 * m1_copy.row(r2);
|
|
VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
|
|
// check nested block xpr on lhs
|
|
m1.row(r1).row(0) += s1 * m1_copy.row(r2);
|
|
VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
|
|
m1 = m1_copy;
|
|
m1.col(c1) += s1 * m1_copy.col(c2);
|
|
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
|
|
m1.col(c1).col(0) += s1 * m1_copy.col(c2);
|
|
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
|
|
|
|
|
|
//check block()
|
|
Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
|
|
|
RowVectorType br1(m1.block(r1,0,1,cols));
|
|
VectorType bc1(m1.block(0,c1,rows,1));
|
|
VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
|
|
VERIFY_IS_EQUAL(m1.row(r1), br1);
|
|
VERIFY_IS_EQUAL(m1.col(c1), bc1);
|
|
//check operator(), both constant and non-constant, on block()
|
|
m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
|
|
m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
|
|
|
|
const Index BlockRows = 2;
|
|
const Index BlockCols = 5;
|
|
|
|
if (rows>=5 && cols>=8)
|
|
{
|
|
// test fixed block() as lvalue
|
|
m1.template block<BlockRows,BlockCols>(1,1) *= s1;
|
|
// test operator() on fixed block() both as constant and non-constant
|
|
m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
|
|
// check that fixed block() and block() agree
|
|
Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
|
|
VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
|
|
|
|
// same tests with mixed fixed/dynamic size
|
|
m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols) *= s1;
|
|
m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols)(0,3) = m1.template block<2,5>(1,1)(1,2);
|
|
Matrix<Scalar,Dynamic,Dynamic> b2 = m1.template block<Dynamic,BlockCols>(3,3,2,5);
|
|
VERIFY_IS_EQUAL(b2, m1.block(3,3,BlockRows,BlockCols));
|
|
|
|
VERIFY(is_same_block(m1.block(3,3,BlockRows,BlockCols), m1.block(3,3,fix<Dynamic>(BlockRows),fix<Dynamic>(BlockCols))));
|
|
VERIFY(is_same_block(m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>,BlockCols)));
|
|
VERIFY(is_same_block(m1.template block<BlockRows,BlockCols>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>(),fix<BlockCols>)));
|
|
VERIFY(is_same_block(m1.template block<BlockRows,BlockCols>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>,fix<BlockCols>(BlockCols))));
|
|
}
|
|
|
|
if (rows>2)
|
|
{
|
|
// test sub vectors
|
|
VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
|
|
VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
|
|
VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
|
|
VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
|
|
Index i = rows-2;
|
|
VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
|
|
VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
|
|
VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
|
|
VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
|
|
i = internal::random<Index>(0,rows-2);
|
|
VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
|
|
}
|
|
|
|
// stress some basic stuffs with block matrices
|
|
VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
|
|
VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
|
|
|
|
VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
|
|
VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
|
|
|
|
// check that linear acccessors works on blocks
|
|
m1 = m1_copy;
|
|
if((MatrixType::Flags&RowMajorBit)==0)
|
|
VERIFY_IS_EQUAL(m1.leftCols(c1).coeff(r1+c1*rows), m1(r1,c1));
|
|
else
|
|
VERIFY_IS_EQUAL(m1.topRows(r1).coeff(c1+r1*cols), m1(r1,c1));
|
|
|
|
|
|
// now test some block-inside-of-block.
|
|
|
|
// expressions with direct access
|
|
VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
|
|
VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
|
|
VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
|
|
VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
|
|
VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
|
|
|
|
// expressions without direct access
|
|
VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
|
|
VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
|
|
VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).eval().row(r1).segment(c1,c2-c1+1)) );
|
|
VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
|
|
VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
|
|
VERIFY_IS_APPROX( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
|
|
VERIFY_IS_APPROX( ((m1+m2).template block<Dynamic,1>(r1,c1,r2-r1+1,1)) , ((m1+m2).eval().col(c1).eval().segment(r1,r2-r1+1)) );
|
|
VERIFY_IS_APPROX( ((m1+m2).template block<1,Dynamic>(r1,c1,1,c2-c1+1)) , ((m1+m2).eval().row(r1).eval().segment(c1,c2-c1+1)) );
|
|
VERIFY_IS_APPROX( ((m1+m2).transpose().template block<1,Dynamic>(c1,r1,1,r2-r1+1)) , ((m1+m2).eval().col(c1).eval().segment(r1,r2-r1+1)).transpose() );
|
|
VERIFY_IS_APPROX( (m1+m2).row(r1).eval(), (m1+m2).eval().row(r1) );
|
|
VERIFY_IS_APPROX( (m1+m2).adjoint().col(r1).eval(), (m1+m2).adjoint().eval().col(r1) );
|
|
VERIFY_IS_APPROX( (m1+m2).adjoint().row(c1).eval(), (m1+m2).adjoint().eval().row(c1) );
|
|
VERIFY_IS_APPROX( (m1*1).row(r1).segment(c1,c2-c1+1).eval(), m1.row(r1).eval().segment(c1,c2-c1+1).eval() );
|
|
VERIFY_IS_APPROX( m1.col(c1).reverse().segment(r1,r2-r1+1).eval(),m1.col(c1).reverse().eval().segment(r1,r2-r1+1).eval() );
|
|
|
|
VERIFY_IS_APPROX( (m1*1).topRows(r1), m1.topRows(r1) );
|
|
VERIFY_IS_APPROX( (m1*1).leftCols(c1), m1.leftCols(c1) );
|
|
VERIFY_IS_APPROX( (m1*1).transpose().topRows(c1), m1.transpose().topRows(c1) );
|
|
VERIFY_IS_APPROX( (m1*1).transpose().leftCols(r1), m1.transpose().leftCols(r1) );
|
|
VERIFY_IS_APPROX( (m1*1).transpose().middleRows(c1,c2-c1+1), m1.transpose().middleRows(c1,c2-c1+1) );
|
|
VERIFY_IS_APPROX( (m1*1).transpose().middleCols(r1,r2-r1+1), m1.transpose().middleCols(r1,r2-r1+1) );
|
|
|
|
// evaluation into plain matrices from expressions with direct access (stress MapBase)
|
|
DynamicMatrixType dm;
|
|
DynamicVectorType dv;
|
|
dm.setZero();
|
|
dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
|
|
VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
|
|
dm.setZero();
|
|
dv.setZero();
|
|
dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
|
|
dv = m1.row(r1).segment(c1,c2-c1+1);
|
|
VERIFY_IS_EQUAL(dv, dm);
|
|
dm.setZero();
|
|
dv.setZero();
|
|
dm = m1.col(c1).segment(r1,r2-r1+1);
|
|
dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
|
|
VERIFY_IS_EQUAL(dv, dm);
|
|
dm.setZero();
|
|
dv.setZero();
|
|
dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
|
|
dv = m1.row(r1).segment(c1,c2-c1+1);
|
|
VERIFY_IS_EQUAL(dv, dm);
|
|
dm.setZero();
|
|
dv.setZero();
|
|
dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
|
|
dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
|
|
VERIFY_IS_EQUAL(dv, dm);
|
|
|
|
VERIFY_IS_EQUAL( (m1.template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
|
|
VERIFY_IS_EQUAL( (m1.template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
|
|
VERIFY_IS_EQUAL( ((m1*1).template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
|
|
VERIFY_IS_EQUAL( ((m1*1).template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
|
|
|
|
if (rows>=2 && cols>=2)
|
|
{
|
|
VERIFY_RAISES_ASSERT( m1 += m1.col(0) );
|
|
VERIFY_RAISES_ASSERT( m1 -= m1.col(0) );
|
|
VERIFY_RAISES_ASSERT( m1.array() *= m1.col(0).array() );
|
|
VERIFY_RAISES_ASSERT( m1.array() /= m1.col(0).array() );
|
|
}
|
|
}
|
|
|
|
|
|
template<typename MatrixType>
|
|
void compare_using_data_and_stride(const MatrixType& m)
|
|
{
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
Index size = m.size();
|
|
Index innerStride = m.innerStride();
|
|
Index outerStride = m.outerStride();
|
|
Index rowStride = m.rowStride();
|
|
Index colStride = m.colStride();
|
|
const typename MatrixType::Scalar* data = m.data();
|
|
|
|
for(int j=0;j<cols;++j)
|
|
for(int i=0;i<rows;++i)
|
|
VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
|
|
|
|
if(!MatrixType::IsVectorAtCompileTime)
|
|
{
|
|
for(int j=0;j<cols;++j)
|
|
for(int i=0;i<rows;++i)
|
|
VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
|
|
? i*outerStride + j*innerStride
|
|
: j*outerStride + i*innerStride]);
|
|
}
|
|
|
|
if(MatrixType::IsVectorAtCompileTime)
|
|
{
|
|
VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
|
|
for (int i=0;i<size;++i)
|
|
VERIFY(m.coeff(i) == data[i*innerStride]);
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void data_and_stride(const MatrixType& m)
|
|
{
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
Index r1 = internal::random<Index>(0,rows-1);
|
|
Index r2 = internal::random<Index>(r1,rows-1);
|
|
Index c1 = internal::random<Index>(0,cols-1);
|
|
Index c2 = internal::random<Index>(c1,cols-1);
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
|
|
compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
|
|
compare_using_data_and_stride(m1.row(r1));
|
|
compare_using_data_and_stride(m1.col(c1));
|
|
compare_using_data_and_stride(m1.row(r1).transpose());
|
|
compare_using_data_and_stride(m1.col(c1).transpose());
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(block)
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( block(Matrix4d()) );
|
|
CALL_SUBTEST_3( block(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST_4( block(MatrixXi(8, 12)) );
|
|
CALL_SUBTEST_5( block(MatrixXcd(20, 20)) );
|
|
CALL_SUBTEST_6( block(MatrixXf(20, 20)) );
|
|
|
|
CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
|
|
|
|
#ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
|
|
CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) );
|
|
CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) );
|
|
#endif
|
|
}
|
|
}
|