mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
93 lines
2.8 KiB
C++
93 lines
2.8 KiB
C++
// Small bench routine for Eigen available in Eigen
|
|
// (C) Desire NUENTSA WAKAM, INRIA
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <unsupported/Eigen/SparseExtra>
|
|
#include <Eigen/SparseLU>
|
|
#include <bench/BenchTimer.h>
|
|
#ifdef EIGEN_METIS_SUPPORT
|
|
#include <Eigen/MetisSupport>
|
|
#endif
|
|
|
|
using namespace std;
|
|
using namespace Eigen;
|
|
|
|
int main(int argc, char **args)
|
|
{
|
|
// typedef complex<double> scalar;
|
|
typedef double scalar;
|
|
SparseMatrix<scalar, ColMajor> A;
|
|
typedef SparseMatrix<scalar, ColMajor>::Index Index;
|
|
typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix;
|
|
typedef Matrix<scalar, Dynamic, 1> DenseRhs;
|
|
Matrix<scalar, Dynamic, 1> b, x, tmp;
|
|
// SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver;
|
|
// #ifdef EIGEN_METIS_SUPPORT
|
|
// SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver;
|
|
// std::cout<< "ORDERING : METIS\n";
|
|
// #else
|
|
SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
|
|
std::cout<< "ORDERING : COLAMD\n";
|
|
// #endif
|
|
|
|
ifstream matrix_file;
|
|
string line;
|
|
int n;
|
|
BenchTimer timer;
|
|
|
|
// Set parameters
|
|
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
|
|
if (argc < 2) assert(false && "please, give the matrix market file ");
|
|
loadMarket(A, args[1]);
|
|
cout << "End charging matrix " << endl;
|
|
bool iscomplex=false, isvector=false;
|
|
int sym;
|
|
getMarketHeader(args[1], sym, iscomplex, isvector);
|
|
// if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
|
|
if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
|
|
if (sym != 0) { // symmetric matrices, only the lower part is stored
|
|
SparseMatrix<scalar, ColMajor> temp;
|
|
temp = A;
|
|
A = temp.selfadjointView<Lower>();
|
|
}
|
|
n = A.cols();
|
|
/* Fill the right hand side */
|
|
|
|
if (argc > 2)
|
|
loadMarketVector(b, args[2]);
|
|
else
|
|
{
|
|
b.resize(n);
|
|
tmp.resize(n);
|
|
// tmp.setRandom();
|
|
for (int i = 0; i < n; i++) tmp(i) = i;
|
|
b = A * tmp ;
|
|
}
|
|
|
|
/* Compute the factorization */
|
|
// solver.isSymmetric(true);
|
|
timer.start();
|
|
// solver.compute(A);
|
|
solver.analyzePattern(A);
|
|
timer.stop();
|
|
cout << "Time to analyze " << timer.value() << std::endl;
|
|
timer.reset();
|
|
timer.start();
|
|
solver.factorize(A);
|
|
timer.stop();
|
|
cout << "Factorize Time " << timer.value() << std::endl;
|
|
timer.reset();
|
|
timer.start();
|
|
x = solver.solve(b);
|
|
timer.stop();
|
|
cout << "solve time " << timer.value() << std::endl;
|
|
/* Check the accuracy */
|
|
Matrix<scalar, Dynamic, 1> tmp2 = b - A*x;
|
|
scalar tempNorm = tmp2.norm()/b.norm();
|
|
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
|
|
cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl;
|
|
|
|
return 0;
|
|
} |