2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-12 14:25:16 +08:00
eigen/unsupported/test/cxx11_tensor_cuda.cu
Eugene Brevdo 39baff850c Add TernaryFunctors and the betainc SpecialFunction.
TernaryFunctors and their executors allow operations on 3-tuples of inputs.
API fully implemented for Arrays and Tensors based on binary functors.

Ported the cephes betainc function (regularized incomplete beta
integral) to Eigen, with support for CPU and GPU, floats, doubles, and
half types.

Added unit tests in array.cpp and cxx11_tensor_cuda.cu


Collapsed revision
* Merged helper methods for betainc across floats and doubles.
* Added TensorGlobalFunctions with betainc().  Removed betainc() from TensorBase.
* Clean up CwiseTernaryOp checks, change igamma_helper to cephes_helper.
* betainc: merge incbcf and incbd into incbeta_cfe.  and more cleanup.
* Update TernaryOp and SpecialFunctions (betainc) based on review comments.
2016-06-02 17:04:19 -07:00

1241 lines
44 KiB
Plaintext

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
void test_cuda_elementwise_small() {
Tensor<float, 1> in1(Eigen::array<int, 1>(2));
Tensor<float, 1> in2(Eigen::array<int, 1>(2));
Tensor<float, 1> out(Eigen::array<int, 1>(2));
in1.setRandom();
in2.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t in2_bytes = in2.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_in2;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1(
d_in1, Eigen::array<int, 1>(2));
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in2(
d_in2, Eigen::array<int, 1>(2));
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_out(
d_out, Eigen::array<int, 1>(2));
gpu_out.device(gpu_device) = gpu_in1 + gpu_in2;
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost,
gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 2; ++i) {
VERIFY_IS_APPROX(
out(Eigen::array<int, 1>(i)),
in1(Eigen::array<int, 1>(i)) + in2(Eigen::array<int, 1>(i)));
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);
}
void test_cuda_elementwise()
{
Tensor<float, 3> in1(Eigen::array<int, 3>(72,53,97));
Tensor<float, 3> in2(Eigen::array<int, 3>(72,53,97));
Tensor<float, 3> in3(Eigen::array<int, 3>(72,53,97));
Tensor<float, 3> out(Eigen::array<int, 3>(72,53,97));
in1.setRandom();
in2.setRandom();
in3.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t in2_bytes = in2.size() * sizeof(float);
std::size_t in3_bytes = in3.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_in2;
float* d_in3;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_in3), in3_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in3, in3.data(), in3_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, Eigen::array<int, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, Eigen::array<int, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in3(d_in3, Eigen::array<int, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, Eigen::array<int, 3>(72,53,97));
gpu_out.device(gpu_device) = gpu_in1 + gpu_in2 * gpu_in3;
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 53; ++j) {
for (int k = 0; k < 97; ++k) {
VERIFY_IS_APPROX(out(Eigen::array<int, 3>(i,j,k)), in1(Eigen::array<int, 3>(i,j,k)) + in2(Eigen::array<int, 3>(i,j,k)) * in3(Eigen::array<int, 3>(i,j,k)));
}
}
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_in3);
cudaFree(d_out);
}
void test_cuda_props() {
Tensor<float, 1> in1(200);
Tensor<bool, 1> out(200);
in1.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(bool);
float* d_in1;
bool* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1(
d_in1, 200);
Eigen::TensorMap<Eigen::Tensor<bool, 1>, Eigen::Aligned> gpu_out(
d_out, 200);
gpu_out.device(gpu_device) = (gpu_in1.isnan)();
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost,
gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 200; ++i) {
VERIFY_IS_EQUAL(out(i), (std::isnan)(in1(i)));
}
cudaFree(d_in1);
cudaFree(d_out);
}
void test_cuda_reduction()
{
Tensor<float, 4> in1(72,53,97,113);
Tensor<float, 2> out(72,97);
in1.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4> > gpu_in1(d_in1, 72,53,97,113);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
array<int, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 3;
gpu_out.device(gpu_device) = gpu_in1.maximum(reduction_axis);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
float expected = 0;
for (int k = 0; k < 53; ++k) {
for (int l = 0; l < 113; ++l) {
expected =
std::max<float>(expected, in1(i, k, j, l));
}
}
VERIFY_IS_APPROX(out(i,j), expected);
}
}
cudaFree(d_in1);
cudaFree(d_out);
}
template<int DataLayout>
void test_cuda_contraction()
{
// with these dimensions, the output has 300 * 140 elements, which is
// more than 30 * 1024, which is the number of threads in blocks on
// a 15 SM GK110 GPU
Tensor<float, 4, DataLayout> t_left(6, 50, 3, 31);
Tensor<float, 5, DataLayout> t_right(Eigen::array<int, 5>(3, 31, 7, 20, 1));
Tensor<float, 5, DataLayout> t_result(Eigen::array<int, 5>(6, 50, 7, 20, 1));
t_left.setRandom();
t_right.setRandom();
std::size_t t_left_bytes = t_left.size() * sizeof(float);
std::size_t t_right_bytes = t_right.size() * sizeof(float);
std::size_t t_result_bytes = t_result.size() * sizeof(float);
float* d_t_left;
float* d_t_right;
float* d_t_result;
cudaMalloc((void**)(&d_t_left), t_left_bytes);
cudaMalloc((void**)(&d_t_right), t_right_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_t_left(d_t_left, 6, 50, 3, 31);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_right(d_t_right, 3, 31, 7, 20, 1);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_result(d_t_result, 6, 50, 7, 20, 1);
typedef Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> > MapXf;
MapXf m_left(t_left.data(), 300, 93);
MapXf m_right(t_right.data(), 93, 140);
Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(300, 140);
typedef Tensor<float, 1>::DimensionPair DimPair;
Eigen::array<DimPair, 2> dims;
dims[0] = DimPair(2, 0);
dims[1] = DimPair(3, 1);
m_result = m_left * m_right;
gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
cudaMemcpy(t_result.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
std::cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " << m_result.data()[i] << std::endl;
assert(false);
}
}
cudaFree(d_t_left);
cudaFree(d_t_right);
cudaFree(d_t_result);
}
template<int DataLayout>
void test_cuda_convolution_1d()
{
Tensor<float, 4, DataLayout> input(74,37,11,137);
Tensor<float, 1, DataLayout> kernel(4);
Tensor<float, 4, DataLayout> out(74,34,11,137);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input, 74,37,11,137);
Eigen::TensorMap<Eigen::Tensor<float, 1, DataLayout> > gpu_kernel(d_kernel, 4);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out, 74,34,11,137);
Eigen::array<int, 1> dims(1);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 74; ++i) {
for (int j = 0; j < 34; ++j) {
for (int k = 0; k < 11; ++k) {
for (int l = 0; l < 137; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i,j+0,k,l) * kernel(0) + input(i,j+1,k,l) * kernel(1) +
input(i,j+2,k,l) * kernel(2) + input(i,j+3,k,l) * kernel(3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
cudaFree(d_input);
cudaFree(d_kernel);
cudaFree(d_out);
}
void test_cuda_convolution_inner_dim_col_major_1d()
{
Tensor<float, 4, ColMajor> input(74,9,11,7);
Tensor<float, 1, ColMajor> kernel(4);
Tensor<float, 4, ColMajor> out(71,9,11,7);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_input(d_input,74,9,11,7);
Eigen::TensorMap<Eigen::Tensor<float, 1, ColMajor> > gpu_kernel(d_kernel,4);
Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_out(d_out,71,9,11,7);
Eigen::array<int, 1> dims(0);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 71; ++i) {
for (int j = 0; j < 9; ++j) {
for (int k = 0; k < 11; ++k) {
for (int l = 0; l < 7; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i+0,j,k,l) * kernel(0) + input(i+1,j,k,l) * kernel(1) +
input(i+2,j,k,l) * kernel(2) + input(i+3,j,k,l) * kernel(3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
cudaFree(d_input);
cudaFree(d_kernel);
cudaFree(d_out);
}
void test_cuda_convolution_inner_dim_row_major_1d()
{
Tensor<float, 4, RowMajor> input(7,9,11,74);
Tensor<float, 1, RowMajor> kernel(4);
Tensor<float, 4, RowMajor> out(7,9,11,71);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_input(d_input, 7,9,11,74);
Eigen::TensorMap<Eigen::Tensor<float, 1, RowMajor> > gpu_kernel(d_kernel, 4);
Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_out(d_out, 7,9,11,71);
Eigen::array<int, 1> dims(3);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 7; ++i) {
for (int j = 0; j < 9; ++j) {
for (int k = 0; k < 11; ++k) {
for (int l = 0; l < 71; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i,j,k,l+0) * kernel(0) + input(i,j,k,l+1) * kernel(1) +
input(i,j,k,l+2) * kernel(2) + input(i,j,k,l+3) * kernel(3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
cudaFree(d_input);
cudaFree(d_kernel);
cudaFree(d_out);
}
template<int DataLayout>
void test_cuda_convolution_2d()
{
Tensor<float, 4, DataLayout> input(74,37,11,137);
Tensor<float, 2, DataLayout> kernel(3,4);
Tensor<float, 4, DataLayout> out(74,35,8,137);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input,74,37,11,137);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_kernel(d_kernel,3,4);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out,74,35,8,137);
Eigen::array<int, 2> dims(1,2);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 74; ++i) {
for (int j = 0; j < 35; ++j) {
for (int k = 0; k < 8; ++k) {
for (int l = 0; l < 137; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
input(i,j+1,k+0,l) * kernel(1,0) +
input(i,j+2,k+0,l) * kernel(2,0) +
input(i,j+0,k+1,l) * kernel(0,1) +
input(i,j+1,k+1,l) * kernel(1,1) +
input(i,j+2,k+1,l) * kernel(2,1) +
input(i,j+0,k+2,l) * kernel(0,2) +
input(i,j+1,k+2,l) * kernel(1,2) +
input(i,j+2,k+2,l) * kernel(2,2) +
input(i,j+0,k+3,l) * kernel(0,3) +
input(i,j+1,k+3,l) * kernel(1,3) +
input(i,j+2,k+3,l) * kernel(2,3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
cudaFree(d_input);
cudaFree(d_kernel);
cudaFree(d_out);
}
template<int DataLayout>
void test_cuda_convolution_3d()
{
Tensor<float, 5, DataLayout> input(Eigen::array<int, 5>(74,37,11,137,17));
Tensor<float, 3, DataLayout> kernel(3,4,2);
Tensor<float, 5, DataLayout> out(Eigen::array<int, 5>(74,35,8,136,17));
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_input(d_input,74,37,11,137,17);
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_kernel(d_kernel,3,4,2);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_out(d_out,74,35,8,136,17);
Eigen::array<int, 3> dims(1,2,3);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 74; ++i) {
for (int j = 0; j < 35; ++j) {
for (int k = 0; k < 8; ++k) {
for (int l = 0; l < 136; ++l) {
for (int m = 0; m < 17; ++m) {
const float result = out(i,j,k,l,m);
const float expected = input(i,j+0,k+0,l+0,m) * kernel(0,0,0) +
input(i,j+1,k+0,l+0,m) * kernel(1,0,0) +
input(i,j+2,k+0,l+0,m) * kernel(2,0,0) +
input(i,j+0,k+1,l+0,m) * kernel(0,1,0) +
input(i,j+1,k+1,l+0,m) * kernel(1,1,0) +
input(i,j+2,k+1,l+0,m) * kernel(2,1,0) +
input(i,j+0,k+2,l+0,m) * kernel(0,2,0) +
input(i,j+1,k+2,l+0,m) * kernel(1,2,0) +
input(i,j+2,k+2,l+0,m) * kernel(2,2,0) +
input(i,j+0,k+3,l+0,m) * kernel(0,3,0) +
input(i,j+1,k+3,l+0,m) * kernel(1,3,0) +
input(i,j+2,k+3,l+0,m) * kernel(2,3,0) +
input(i,j+0,k+0,l+1,m) * kernel(0,0,1) +
input(i,j+1,k+0,l+1,m) * kernel(1,0,1) +
input(i,j+2,k+0,l+1,m) * kernel(2,0,1) +
input(i,j+0,k+1,l+1,m) * kernel(0,1,1) +
input(i,j+1,k+1,l+1,m) * kernel(1,1,1) +
input(i,j+2,k+1,l+1,m) * kernel(2,1,1) +
input(i,j+0,k+2,l+1,m) * kernel(0,2,1) +
input(i,j+1,k+2,l+1,m) * kernel(1,2,1) +
input(i,j+2,k+2,l+1,m) * kernel(2,2,1) +
input(i,j+0,k+3,l+1,m) * kernel(0,3,1) +
input(i,j+1,k+3,l+1,m) * kernel(1,3,1) +
input(i,j+2,k+3,l+1,m) * kernel(2,3,1);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
}
cudaFree(d_input);
cudaFree(d_kernel);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_lgamma(const Scalar stddev)
{
Tensor<Scalar, 2> in(72,97);
in.setRandom();
in *= in.constant(stddev);
Tensor<Scalar, 2> out(72,97);
out.setZero();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_in.lgamma();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
VERIFY_IS_APPROX(out(i,j), (std::lgamma)(in(i,j)));
}
}
cudaFree(d_in);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_digamma()
{
Tensor<Scalar, 1> in(7);
Tensor<Scalar, 1> out(7);
Tensor<Scalar, 1> expected_out(7);
out.setZero();
in(0) = Scalar(1);
in(1) = Scalar(1.5);
in(2) = Scalar(4);
in(3) = Scalar(-10.5);
in(4) = Scalar(10000.5);
in(5) = Scalar(0);
in(6) = Scalar(-1);
expected_out(0) = Scalar(-0.5772156649015329);
expected_out(1) = Scalar(0.03648997397857645);
expected_out(2) = Scalar(1.2561176684318);
expected_out(3) = Scalar(2.398239129535781);
expected_out(4) = Scalar(9.210340372392849);
expected_out(5) = std::numeric_limits<Scalar>::infinity();
expected_out(6) = std::numeric_limits<Scalar>::infinity();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 7);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
gpu_out.device(gpu_device) = gpu_in.digamma();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
for (int i = 5; i < 7; ++i) {
VERIFY_IS_EQUAL(out(i), expected_out(i));
}
cudaFree(d_in);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_zeta()
{
Tensor<Scalar, 1> in_x(6);
Tensor<Scalar, 1> in_q(6);
Tensor<Scalar, 1> out(6);
Tensor<Scalar, 1> expected_out(6);
out.setZero();
in_x(0) = Scalar(1);
in_x(1) = Scalar(1.5);
in_x(2) = Scalar(4);
in_x(3) = Scalar(-10.5);
in_x(4) = Scalar(10000.5);
in_x(5) = Scalar(3);
in_q(0) = Scalar(1.2345);
in_q(1) = Scalar(2);
in_q(2) = Scalar(1.5);
in_q(3) = Scalar(3);
in_q(4) = Scalar(1.0001);
in_q(5) = Scalar(-2.5);
expected_out(0) = std::numeric_limits<Scalar>::infinity();
expected_out(1) = Scalar(1.61237534869);
expected_out(2) = Scalar(0.234848505667);
expected_out(3) = Scalar(1.03086757337e-5);
expected_out(4) = Scalar(0.367879440865);
expected_out(5) = Scalar(0.054102025820864097);
std::size_t bytes = in_x.size() * sizeof(Scalar);
Scalar* d_in_x;
Scalar* d_in_q;
Scalar* d_out;
cudaMalloc((void**)(&d_in_x), bytes);
cudaMalloc((void**)(&d_in_q), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in_q, in_q.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_q(d_in_q, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 6);
gpu_out.device(gpu_device) = gpu_in_x.zeta(gpu_in_q);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
VERIFY_IS_EQUAL(out(0), expected_out(0));
VERIFY((std::isnan)(out(3)));
for (int i = 1; i < 6; ++i) {
if (i != 3) {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
}
cudaFree(d_in_x);
cudaFree(d_in_q);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_polygamma()
{
Tensor<Scalar, 1> in_x(7);
Tensor<Scalar, 1> in_n(7);
Tensor<Scalar, 1> out(7);
Tensor<Scalar, 1> expected_out(7);
out.setZero();
in_n(0) = Scalar(1);
in_n(1) = Scalar(1);
in_n(2) = Scalar(1);
in_n(3) = Scalar(17);
in_n(4) = Scalar(31);
in_n(5) = Scalar(28);
in_n(6) = Scalar(8);
in_x(0) = Scalar(2);
in_x(1) = Scalar(3);
in_x(2) = Scalar(25.5);
in_x(3) = Scalar(4.7);
in_x(4) = Scalar(11.8);
in_x(5) = Scalar(17.7);
in_x(6) = Scalar(30.2);
expected_out(0) = Scalar(0.644934066848);
expected_out(1) = Scalar(0.394934066848);
expected_out(2) = Scalar(0.0399946696496);
expected_out(3) = Scalar(293.334565435);
expected_out(4) = Scalar(0.445487887616);
expected_out(5) = Scalar(-2.47810300902e-07);
expected_out(6) = Scalar(-8.29668781082e-09);
std::size_t bytes = in_x.size() * sizeof(Scalar);
Scalar* d_in_x;
Scalar* d_in_n;
Scalar* d_out;
cudaMalloc((void**)(&d_in_x), bytes);
cudaMalloc((void**)(&d_in_n), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in_n, in_n.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 7);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_n(d_in_n, 7);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
gpu_out.device(gpu_device) = gpu_in_n.polygamma(gpu_in_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 7; ++i) {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
cudaFree(d_in_x);
cudaFree(d_in_n);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_igamma()
{
Tensor<Scalar, 2> a(6, 6);
Tensor<Scalar, 2> x(6, 6);
Tensor<Scalar, 2> out(6, 6);
out.setZero();
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
a(i, j) = a_s[i];
x(i, j) = x_s[j];
}
}
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
{0.0, 0.6321205588285578, 0.7768698398515702,
0.9816843611112658, 9.999500016666262e-05, 1.0},
{0.0, 0.4275932955291202, 0.608374823728911,
0.9539882943107686, 7.522076445089201e-07, 1.0},
{0.0, 0.01898815687615381, 0.06564245437845008,
0.5665298796332909, 4.166333347221828e-18, 1.0},
{0.0, 0.9999780593618628, 0.9999899967080838,
0.9999996219837988, 0.9991370418689945, 1.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
std::size_t bytes = a.size() * sizeof(Scalar);
Scalar* d_a;
Scalar* d_x;
Scalar* d_out;
assert(cudaMalloc((void**)(&d_a), bytes) == cudaSuccess);
assert(cudaMalloc((void**)(&d_x), bytes) == cudaSuccess);
assert(cudaMalloc((void**)(&d_out), bytes) == cudaSuccess);
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
gpu_out.device(gpu_device) = gpu_a.igamma(gpu_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
if ((std::isnan)(igamma_s[i][j])) {
VERIFY((std::isnan)(out(i, j)));
} else {
VERIFY_IS_APPROX(out(i, j), igamma_s[i][j]);
}
}
}
cudaFree(d_a);
cudaFree(d_x);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_igammac()
{
Tensor<Scalar, 2> a(6, 6);
Tensor<Scalar, 2> x(6, 6);
Tensor<Scalar, 2> out(6, 6);
out.setZero();
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
a(i, j) = a_s[i];
x(i, j) = x_s[j];
}
}
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
{1.0, 0.36787944117144233, 0.22313016014842982,
0.018315638888734182, 0.9999000049998333, 0.0},
{1.0, 0.5724067044708798, 0.3916251762710878,
0.04601170568923136, 0.9999992477923555, 0.0},
{1.0, 0.9810118431238462, 0.9343575456215499,
0.4334701203667089, 1.0, 0.0},
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
3.7801620118431334e-07, 0.0008629581310054535,
0.0},
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
std::size_t bytes = a.size() * sizeof(Scalar);
Scalar* d_a;
Scalar* d_x;
Scalar* d_out;
cudaMalloc((void**)(&d_a), bytes);
cudaMalloc((void**)(&d_x), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
gpu_out.device(gpu_device) = gpu_a.igammac(gpu_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
if ((std::isnan)(igammac_s[i][j])) {
VERIFY((std::isnan)(out(i, j)));
} else {
VERIFY_IS_APPROX(out(i, j), igammac_s[i][j]);
}
}
}
cudaFree(d_a);
cudaFree(d_x);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_erf(const Scalar stddev)
{
Tensor<Scalar, 2> in(72,97);
in.setRandom();
in *= in.constant(stddev);
Tensor<Scalar, 2> out(72,97);
out.setZero();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
assert(cudaMalloc((void**)(&d_in), bytes) == cudaSuccess);
assert(cudaMalloc((void**)(&d_out), bytes) == cudaSuccess);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_in.erf();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
VERIFY_IS_APPROX(out(i,j), (std::erf)(in(i,j)));
}
}
cudaFree(d_in);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_erfc(const Scalar stddev)
{
Tensor<Scalar, 2> in(72,97);
in.setRandom();
in *= in.constant(stddev);
Tensor<Scalar, 2> out(72,97);
out.setZero();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_in.erfc();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
VERIFY_IS_APPROX(out(i,j), (std::erfc)(in(i,j)));
}
}
cudaFree(d_in);
cudaFree(d_out);
}
template <typename Scalar>
void test_cuda_betainc()
{
Tensor<Scalar, 1> in_x(125);
Tensor<Scalar, 1> in_a(125);
Tensor<Scalar, 1> in_b(125);
Tensor<Scalar, 1> out(125);
Tensor<Scalar, 1> expected_out(125);
out.setZero();
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Array<Scalar, 1, Dynamic> x(125);
Array<Scalar, 1, Dynamic> a(125);
Array<Scalar, 1, Dynamic> b(125);
Array<Scalar, 1, Dynamic> v(125);
a << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999;
b << 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0,
0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379,
31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0,
0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999,
999.999, 999.999, 999.999;
x << -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8,
1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2,
0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1,
0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1,
-0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8,
1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2,
0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1;
v << nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, 0.47972119876364683, 0.5, 0.5202788012363533, nan, nan,
0.9518683957740043, 0.9789663010413743, 0.9931729188073435, nan, nan,
0.999995949033062, 0.9999999999993698, 0.9999999999999999, nan, nan,
0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan, nan,
nan, nan, nan, nan, 0.006827081192655869, 0.0210336989586256,
0.04813160422599567, nan, nan, 0.20014344256217678, 0.5000000000000001,
0.7998565574378232, nan, nan, 0.9991401428435834, 0.999999999698403,
0.9999999999999999, nan, nan, 0.9999999999999999, 0.9999999999999999,
0.9999999999999999, nan, nan, nan, nan, nan, nan, nan,
1.0646600232370887e-25, 6.301722877826246e-13, 4.050966937974938e-06, nan,
nan, 7.864342668429763e-23, 3.015969667594166e-10, 0.0008598571564165444,
nan, nan, 6.031987710123844e-08, 0.5000000000000007, 0.9999999396801229,
nan, nan, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan,
nan, nan, nan, nan, nan, nan, 0.0, 7.029920380986636e-306,
2.2450728208591345e-101, nan, nan, 0.0, 9.275871147869727e-302,
1.2232913026152827e-97, nan, nan, 0.0, 3.0891393081932924e-252,
2.9303043666183996e-60, nan, nan, 2.248913486879199e-196,
0.5000000000004947, 0.9999999999999999, nan;
for (int i = 0; i < 125; ++i) {
in_x(i) = x(i);
in_a(i) = a(i);
in_b(i) = b(i);
expected_out(i) = v(i);
}
std::size_t bytes = in_x.size() * sizeof(Scalar);
Scalar* d_in_x;
Scalar* d_in_a;
Scalar* d_in_b;
Scalar* d_out;
cudaMalloc((void**)(&d_in_x), bytes);
cudaMalloc((void**)(&d_in_a), bytes);
cudaMalloc((void**)(&d_in_b), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in_a, in_a.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in_b, in_b.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 125);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_a(d_in_a, 125);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_b(d_in_b, 125);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 125);
gpu_out.device(gpu_device) = betainc(gpu_in_a, gpu_in_b, gpu_in_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 1; i < 125; ++i) {
if ((std::isnan)(expected_out(i))) {
VERIFY((std::isnan)(out(i)));
} else {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
}
cudaFree(d_in_x);
cudaFree(d_in_a);
cudaFree(d_in_b);
cudaFree(d_out);
}
void test_cxx11_tensor_cuda()
{
CALL_SUBTEST_1(test_cuda_elementwise_small());
CALL_SUBTEST_1(test_cuda_elementwise());
CALL_SUBTEST_1(test_cuda_props());
CALL_SUBTEST_1(test_cuda_reduction());
CALL_SUBTEST_2(test_cuda_contraction<ColMajor>());
CALL_SUBTEST_2(test_cuda_contraction<RowMajor>());
CALL_SUBTEST_3(test_cuda_convolution_1d<ColMajor>());
CALL_SUBTEST_3(test_cuda_convolution_1d<RowMajor>());
CALL_SUBTEST_3(test_cuda_convolution_inner_dim_col_major_1d());
CALL_SUBTEST_3(test_cuda_convolution_inner_dim_row_major_1d());
CALL_SUBTEST_3(test_cuda_convolution_2d<ColMajor>());
CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>());
CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>());
CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>());
#if __cplusplus > 199711L
// std::erf, std::erfc, and so on where only added in c++11. We use them
// as a golden reference to validate the results produced by Eigen. Therefore
// we can only run these tests if we use a c++11 compiler.
CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f));
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
CALL_SUBTEST_4(test_cuda_erf<float>(1.0f));
CALL_SUBTEST_4(test_cuda_erf<float>(100.0f));
CALL_SUBTEST_4(test_cuda_erf<float>(0.01f));
CALL_SUBTEST_4(test_cuda_erf<float>(0.001f));
CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f));
// CALL_SUBTEST(test_cuda_erfc<float>(100.0f));
CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs
CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f));
CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f));
CALL_SUBTEST_4(test_cuda_erf<double>(1.0));
CALL_SUBTEST_4(test_cuda_erf<double>(100.0));
CALL_SUBTEST_4(test_cuda_erf<double>(0.01));
CALL_SUBTEST_4(test_cuda_erf<double>(0.001));
CALL_SUBTEST_4(test_cuda_erfc<double>(1.0));
// CALL_SUBTEST(test_cuda_erfc<double>(100.0));
CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs
CALL_SUBTEST_4(test_cuda_erfc<double>(0.01));
CALL_SUBTEST_4(test_cuda_erfc<double>(0.001));
CALL_SUBTEST_5(test_cuda_digamma<float>());
CALL_SUBTEST_5(test_cuda_digamma<double>());
CALL_SUBTEST_5(test_cuda_polygamma<float>());
CALL_SUBTEST_5(test_cuda_polygamma<double>());
CALL_SUBTEST_5(test_cuda_zeta<float>());
CALL_SUBTEST_5(test_cuda_zeta<double>());
CALL_SUBTEST_5(test_cuda_igamma<float>());
CALL_SUBTEST_5(test_cuda_igammac<float>());
CALL_SUBTEST_5(test_cuda_igamma<double>());
CALL_SUBTEST_5(test_cuda_igammac<double>());
CALL_SUBTEST_6(test_cuda_betainc<float>());
CALL_SUBTEST_6(test_cuda_betainc<double>());
#endif
}